21,385 research outputs found

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Technology adoption in the BIM implementation for lean architectural practice

    Get PDF
    Justification for Research: the construction companies are facing barriers and challenges in BIM adoption as there is no clear guidance or best practice studies from which they can learn and build up their capacity for BIM use in order to increase productivity, efficiency, quality, and to attain competitive advantages in the global market and to achieve the targets in environmental sustainability. Purpose: this paper aims to explain a comprehensive and systemic evaluation and assessment of the relevant BIM technologies as part of the BIM adoption and implementation to demonstrate how efficiency gains have been achieved towards a lean architectural practice. Design/Methodology/Approach: The research is undertaken through a KTP (Knowledge transfer Partnership) project between the University of Salford and the John McCall Architects based in Liverpool, which is an SME (Small Medium Enterprise). The overall aim of KTP is to develop Lean Design Practice through the BIM adoption and implementation. The overall BIM implementation approach uses a socio-technical view in which it does not only consider the implementation of technology but also considers the socio-cultural environment that provides the context for its implementation. The technology adoption methodology within the BIM implementation approach is the action research oriented qualitative and quantitative research for discovery, comparison, and experimentation as the KTP project with JMA provides an environment for “learning by doing” Findings: research has proved that BIM technology adoption should be undertaken with a bottom-up approach rather than top-down approach for successful change management and dealing with the resistance to change. As a result of the BIM technology adoption, efficiency gains are achieved through the piloting projects and the design process is improved through the elimination of wastes and value generation. Originality/Value: successful BIM adoption needs an implementation strategy. However, at operational level, it is imperative that professional guidelines are required as part of the implementation strategy. This paper introduces a systematic approach for BIM technology adoption based on a case study implementation and it demonstrates a guideline at operational level for other SME companies of architectural practices

    A performance of 2 dimensional ultrasonic vibration assisted milling in cutting force reduction, on aluminium AL6061

    Get PDF
    This paper were investigate a performance of 2 Dimensional Ultrasonic Vibration assisted Milling (UVAM) toward Aluminium Al 6061. The focus is to find the performance of reduction of cutting force compared to the conventional machining in the industries shop floor. Due to the major effect of cutting force of production in industries, the excessive cutting force problem must be investigated deeply as it will cause shortens tool life and reduces the production rate. A scientific approach has been found in order to reduce the cutting force during machining which is integrating the ultrasonic concept into workpiece. The modelling of vibration cutting ratio has been simulated to find the time force contact and non-contact. Thus, less cutting force could be found. The ultrasonic vibration platform that generated by XY25XS from Cedrat Technologies is travelled in X direction as a feed movement. Thus, the X and Y axis vibration actuate along the workpiece for the machining process. The performance of UVAM in cutting force reduction found the superior benefits of UVAM is come from the alternating cycle’s between tool and workpiece. The comparison between UVAM and conventional machining in reduction of cutting force is 32%. The potential of the UVAM tool wear and tool life will be discussed deeply in finding and next in the conclusion section

    Green buildings and design for adaptation: strategies for renovation of the built environment

    Get PDF
    The recent EU Directives 2010/31 and 2012/27 provide standards of nearly zero energy buildings for new constructions, aiming at a better quality of the built environment through the adoption of high-performance solutions. In the near future, cities are expected to be the main engine of development while bearing the impact of population growth: new challenges such as increasing energy efficiency, reducing maintenance costs of buildings and infrastructures, facing the effects of climate change and adjusting on-going and future impacts, require smart and sustainable approaches. To improve the capability of adaptation to dynamics of transformation, buildings and districts have to increase their resilience, assumed as ‘the capacity to adapt to changing conditions and to maintain or regain functionality and vitality in the face of stress or disturbance’ (Wilson A., Building Resilience in Boston, Boston Society of Architects, 2013). This paper describes the research methodology, developed by the Department of Architecture, a research unit of Technology for Architecture, to perform the assessment of resilience of existing buildings, as well as the outcomes of its application within Bologna urban context. This methodology focuses on the design for adaptation of social housing buildings, aiming at predicting their expected main impacts (energy consumption, emissions, efficiency, urban quality and environmental sustainability) and at developing models for renovation

    Effects of geometrical parameters to the performance of louvered fin heat exchangers

    Get PDF
    Numerical study using ANSYS Fluent is conducted to investigate the effects of louver angle on pressure drop and heat transfer of a heat exchanger. Flow simulations are conducted on 3D modeling of multi stacks louvered fins at three different parameters of louver angles which are 22.0Âș, 25.5Âș and 29.0Âș with Reynolds number ranging from 200 to 1000. These Reynolds numbers are based on louver pitch and fin pitch. The flow temperature is set at 300K which is the room temperature, while temperature of louver fin is set at 400K. The results show that Reynolds number based on fin pitch 2.02 mm and louver angle of 22.0Âș generate higher performance of heat exchanger compared to louver pitch of 1.40 mm and the other louver angles. Therefore, configuration of Reynolds number based on fin pitch 2.02 mm and louver angle 22.0Âș is preferred to be adopted in the design process of heat exchanger

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    The manufacturing industry transition from traditional manufacturing to a smart factory: Role of 3rd party service providers.

    Get PDF
    This thesis explores the role of 3rd party service providers in the transition from traditional manufacturing to smart factory. The research investigates the challenges and opportunities associated with a digital transformation by reviewing the concept of a smart factory and collecting data through literature reviews and interviews with companies from the manufacturing industry. The analysis reveals that successful digital transformation in the manufacturing industry involves not only the adoption of digital technologies but also organizational changes. Today's manufacturing industry faces challenges related to development, integration with existing infrastructure, resource allocation, strategic planning, and organization-wide commitment. It becomes evident that 3rd party service providers, such as Capgemini, can play a crucial role in supporting companies throughout their digital transformation journey and filling the resource gap, by providing valuable technology and organizational insights, and expertise. However, the research has identified that Capgemini's current service levels are between limited and moderate in terms of coverage at some key areas towards an end-to-end service towards a digital transformation. The thesis proposes a digital transformation best practices framework, developed based on the conducted research and analysis, which guides 3rd party service providers to identify areas that lead to a successful digital transformation from traditional manufacturing to a smart factory

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power
    • 

    corecore