1,473 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner

    Extending Structural Learning Paradigms for High-Dimensional Machine Learning and Analysis

    Get PDF
    Structure-based machine-learning techniques are frequently used in extensions of supervised learning, such as active, semi-supervised, multi-modal, and multi-task learning. A common step in many successful methods is a structure-discovery process that is made possible through the addition of new information, which can be user feedback, unlabeled data, data from similar tasks, alternate views of the problem, etc. Learning paradigms developed in the above-mentioned fields have led to some extremely flexible, scalable, and successful multivariate analysis approaches. This success and flexibility offer opportunities to expand the use of machine learning paradigms to more complex analyses. In particular, while information is often readily available concerning complex problems, the relationships among the information rarely follow the simple labeled-example-based setup that supervised learning is based upon. Even when it is possible to incorporate additional data in such forms, the result is often an explosion in the dimensionality of the input space, such that both sample complexity and computational complexity can limit real-world success. In this work, we review many of the latest structural learning approaches for dealing with sample complexity. We expand their use to generate new paradigms for combining some of these learning strategies to address more complex problem spaces. We overview extreme-scale data analysis problems where sample complexity is a much more limiting factor than computational complexity, and outline new structural-learning approaches for dealing jointly with both. We develop and demonstrate a method for dealing with sample complexity in complex systems that leads to a more scalable algorithm than other approaches to large-scale multi-variate analysis. This new approach reflects the underlying problem structure more accurately by using interdependence to address sample complexity, rather than ignoring it for the sake of tractability

    Learning A Disentangling Representation For PU Learning

    Full text link
    In this paper, we address the problem of learning a binary (positive vs. negative) classifier given Positive and Unlabeled data commonly referred to as PU learning. Although rudimentary techniques like clustering, out-of-distribution detection, or positive density estimation can be used to solve the problem in low-dimensional settings, their efficacy progressively deteriorates with higher dimensions due to the increasing complexities in the data distribution. In this paper we propose to learn a neural network-based data representation using a loss function that can be used to project the unlabeled data into two (positive and negative) clusters that can be easily identified using simple clustering techniques, effectively emulating the phenomenon observed in low-dimensional settings. We adopt a vector quantization technique for the learned representations to amplify the separation between the learned unlabeled data clusters. We conduct experiments on simulated PU data that demonstrate the improved performance of our proposed method compared to the current state-of-the-art approaches. We also provide some theoretical justification for our two cluster-based approach and our algorithmic choices

    Learning with Single View Co-training and Marginalized Dropout

    Get PDF
    The generalization properties of most existing machine learning techniques are predicated on the assumptions that 1) a sufficiently large quantity of training data is available; 2) the training and testing data come from some common distribution. Although these assumptions are often met in practice, there are also many scenarios in which training data from the relevant distribution is insufficient. We focus on making use of additional data, which is readily available or can be obtained easily but comes from a different distribution than the testing data, to aid learning. We present five learning scenarios, depending on how the distribution we used to sample the additional training data differs from the testing distribution: 1) learning with weak supervision; 2) domain adaptation; 3) learning from multiple domains; 4) learning from corrupted data; 5) learning with partial supervision. We introduce two strategies and manifest them in five ways to cope with the difference between the training and testing distribution. The first strategy, which gives rise to Pseudo Multi-view Co-training: PMC) and Co-training for Domain Adaptation: CODA), is inspired by the co-training algorithm for multi-view data. PMC generalizes co-training to the more common single view data and allows us to learn from weakly labeled data retrieved free from the web. CODA integrates PMC with an another feature selection component to address the feature incompatibility between domains for domain adaptation. PMC and CODA are evaluated on a variety of real datasets, and both yield record performance. The second strategy marginalized dropout leads to marginalized Stacked Denoising Autoencoders: mSDA), Marginalized Corrupted Features: MCF) and FastTag: FastTag). mSDA diminishes the difference between distributions associated with different domains by learning a new representation through marginalized corruption and reconstruciton. MCF learns from a known distribution which is created by corrupting a small set of training data, and improves robustness of learned classifiers by training on ``infinitely\u27\u27 many data sampled from the distribution. FastTag applies marginalized dropout to the output of partially labeled data to recover missing labels for multi-label tasks. These three algorithms not only achieve the state-of-art performance in various tasks, but also deliver orders of magnitude speed up at training and testing comparing to competing algorithms
    corecore