22,492 research outputs found

    Where do statistical models come from? Revisiting the problem of specification

    Full text link
    R. A. Fisher founded modern statistical inference in 1922 and identified its fundamental problems to be: specification, estimation and distribution. Since then the problem of statistical model specification has received scant attention in the statistics literature. The paper traces the history of statistical model specification, focusing primarily on pioneers like Fisher, Neyman, and more recently Lehmann and Cox, and attempts a synthesis of their views in the context of the Probabilistic Reduction (PR) approach. As argued by Lehmann [11], a major stumbling block for a general approach to statistical model specification has been the delineation of the appropriate role for substantive subject matter information. The PR approach demarcates the interrelated but complemenatry roles of substantive and statistical information summarized ab initio in the form of a structural and a statistical model, respectively. In an attempt to preserve the integrity of both sources of information, as well as to ensure the reliability of their fusing, a purely probabilistic construal of statistical models is advocated. This probabilistic construal is then used to shed light on a number of issues relating to specification, including the role of preliminary data analysis, structural vs. statistical models, model specification vs. model selection, statistical vs. substantive adequacy and model validation.Comment: Published at http://dx.doi.org/10.1214/074921706000000419 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment
    corecore