9,904 research outputs found

    Science and Technology Governance and Ethics - A Global Perspective from Europe, India and China

    Get PDF
    This book analyzes the possibilities for effective global governance of science in Europe, India and China. Authors from the three regions join forces to explore how ethical concerns over new technologies can be incorporated into global science and technology policies. The first chapter introduces the topic, offering a global perspective on embedding ethics in science and technology policy. Chapter Two compares the institutionalization of ethical debates in science, technology and innovation policy in three important regions: Europe, India and China. The third chapter explores public perceptions of science and technology in these same three regions. Chapter Four discusses public engagement in the governance of science and technology, and Chapter Five reviews science and technology governance and European values. The sixth chapter describes and analyzes values demonstrated in the constitution of the People’s Republic of China. Chapter Seven describes emerging evidence from India on the uses of science and technology for socio-economic development, and the quest for inclusive growth. In Chapter Eight, the authors propose a comparative framework for studying global ethics in science and technology. The following three chapters offer case studies and analysis of three emerging industries in India, China and Europe: new food technologies, nanotechnology and synthetic biology. Chapter 12 gathers all these threads for a comprehensive discussion on incorporating ethics into science and technology policy. The analysis is undertaken against the backdrop of different value systems and varying levels of public perception of risks and benefits. The book introduces a common analytical framework for the comparative discussion of ethics at the international level. The authors offer policy recommendations for effective collaboration among the three regions, to promote responsible governance in science and technology and a common analytical perspective in ethics

    Report on first selection of resources

    Get PDF
    The central objective of the Metanet4u project is to contribute to the establishment of a pan-European digital platform that makes available language resources and services, encompassing both datasets and software tools, for speech and language processing, and supports a new generation of exchange facilities for them.Peer ReviewedPreprin

    Fostering college and career readiness: how career development activities in schools impact on graduation rates and students' life success

    Get PDF
    This paper sets out the recent evidence around career development. This evidence is examined within the context of the college and career readiness agenda. The argument is made that in order for young people to be genuinely “ready” for both college and career they need to have attended to their academic achievement, their aspirations and plans for the future, their ability to make transitions and their ability to direct their own careers. It is argued that career development offers schools a body of practice that has been shown to have a positive impact on young people’s readiness for college and career. The report acknowledges that the provision of career development has been in decline in many North American schools despite evidence of its effectiveness. Given the current instability of the labor market, the increasing complexity of the education system and the need to grow the skills base of the workforce in a competitive global market, failing to attend to young people’s careers seems shortsighted. As this paper shows, there is a strong body of evidence which demonstrates that career development activity in schools can help young people to experience academic achievement, successfully transition to the labor market and live happier and more productive lives. It is hoped that setting out the evidence in this area of research will provide policy makers and school leaders with the resources required to make informed decisions and to support the development of the future generations of talent. The paper explores the impacts of career development in relation to four main questions: • Does career development engage young people in their schooling and help keep them attending school? • Does career development positively impact on young people’s academic achievement? • Does career development assist young people in making successful transitions to college or the labor market? • Does career development have a positive effect on people’s career and life success?Career Cruisin

    Building and Designing Expressive Speech Synthesis

    Get PDF
    We know there is something special about speech. Our voices are not just a means of communicating. They also give a deep impression of who we are and what we might know. They can betray our upbringing, our emotional state, our state of health. They can be used to persuade and convince, to calm and to excite. As speech systems enter the social domain they are required to interact, support and mediate our social relationships with 1) each other, 2) with digital information, and, increasingly, 3) with AI-based algorithms and processes. Socially Interactive Agents (SIAs) are at the fore- front of research and innovation in this area. There is an assumption that in the future “spoken language will provide a natural conversational interface between human beings and so-called intelligent systems.” [Moore 2017, p. 283]. A considerable amount of previous research work has tested this assumption with mixed results. However, as pointed out “voice interfaces have become notorious for fostering frustration and failure” [Nass and Brave 2005, p.6]. It is within this context, between our exceptional and intelligent human use of speech to communicate and interact with other humans, and our desire to leverage this means of communication for artificial systems, that the technology, often termed expressive speech synthesis uncomfortably falls. Uncomfortably, because it is often overshadowed by issues in interactivity and the underlying intelligence of the system which is something that emerges from the interaction of many of the components in a SIA. This is especially true of what we might term conversational speech, where decoupling how things are spoken, from when and to whom they are spoken, can seem an impossible task. This is an even greater challenge in evaluation and in characterising full systems which have made use of expressive speech. Furthermore when designing an interaction with a SIA, we must not only consider how SIAs should speak but how much, and whether they should even speak at all. These considerations cannot be ignored. Any speech synthesis that is used in the context of an artificial agent will have a perceived accent, a vocal style, an underlying emotion and an intonational model. Dimensions like accent and personality (cross speaker parameters) as well as vocal style, emotion and intonation during an interaction (within-speaker parameters) need to be built in the design of a synthetic voice. Even a default or neutral voice has to consider these same expressive speech synthesis components. Such design parameters have a strong influence on how effectively a system will interact, how it is perceived and its assumed ability to perform a task or function. To ignore these is to blindly accept a set of design decisions that ignores the complex effect speech has on the user’s successful interaction with a system. Thus expressive speech synthesis is a key design component in SIAs. This chapter explores the world of expressive speech synthesis, aiming to act as a starting point for those interested in the design, building and evaluation of such artificial speech. The debates and literature within this topic are vast and are fundamentally multidisciplinary in focus, covering a wide range of disciplines such as linguistics, pragmatics, psychology, speech and language technology, robotics and human-computer interaction (HCI), to name a few. It is not our aim to synthesise these areas but to give a scaffold and a starting point for the reader by exploring the critical dimensions and decisions they may need to consider when choosing to use expressive speech. To do this, the chapter explores the building of expressive synthesis, highlighting key decisions and parameters as well as emphasising future challenges in expressive speech research and development. Yet, before these are expanded upon we must first try and define what we actually mean by expressive speech

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    The interplay between business and society - two views from practitioners in the field

    Get PDF

    Machine Learning Mitigants for Speech Based Cyber Risk

    Get PDF
    Statistical analysis of speech is an emerging area of machine learning. In this paper, we tackle the biometric challenge of Automatic Speaker Verification (ASV) of differentiating between samples generated by two distinct populations of utterances, those of an authentic human voice and those generated by a synthetic one. Solving such an issue through a statistical perspective foresees the definition of a decision rule function and a learning procedure to identify the optimal classifier. Classical state-of-the-art countermeasures rely on strong assumptions such as stationarity or local-stationarity of speech that may be atypical to encounter in practice. We explore in this regard a robust non-linear and non-stationary signal decomposition method known as the Empirical Mode Decomposition combined with the Mel-Frequency Cepstral Coefficients in a novel fashion with a refined classifier technique known as multi-kernel Support Vector machine. We undertake significant real data case studies covering multiple ASV systems using different datasets, including the ASVSpoof 2019 challenge database. The obtained results overwhelmingly demonstrate the significance of our feature extraction and classifier approach versus existing conventional methods in reducing the threat of cyber-attack perpetrated by synthetic voice replication seeking unauthorised access

    Language technologies for a multilingual Europe

    Get PDF
    This volume of the series “Translation and Multilingual Natural Language Processing” includes most of the papers presented at the Workshop “Language Technology for a Multilingual Europe”, held at the University of Hamburg on September 27, 2011 in the framework of the conference GSCL 2011 with the topic “Multilingual Resources and Multilingual Applications”, along with several additional contributions. In addition to an overview article on Machine Translation and two contributions on the European initiatives META-NET and Multilingual Web, the volume includes six full research articles. Our intention with this workshop was to bring together various groups concerned with the umbrella topics of multilingualism and language technology, especially multilingual technologies. This encompassed, on the one hand, representatives from research and development in the field of language technologies, and, on the other hand, users from diverse areas such as, among others, industry, administration and funding agencies. The Workshop “Language Technology for a Multilingual Europe” was co-organised by the two GSCL working groups “Text Technology” and “Machine Translation” (http://gscl.info) as well as by META-NET (http://www.meta-net.eu)
    corecore