58,822 research outputs found

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Smart Cities for Real People

    Get PDF
    Accelerating urbanization of the population and the emergence of new smart sensors (the Internet of Things) are combining in the phenomenon of the smart city. This movement is leading to improved quality of life and public safety, helping cities to enjoy economies that help remedy some budget overruns, better health care, and is resulting in increased productivity. The following report summarizes evolving digital technology trends, including smart phone applications, mapping software, big data and sensor miniaturization and broadband networking, that combine to create a technology toolkit available to smart city developers, managers and citizens. As noted above, the benefits of the smart city are already evident in some key areas as the technology sees actual implementation, 30 years after the creation of the broadband cable modem. The challenges of urbanization require urgent action and intelligent strategies. The applications and tools that truly benefit the people who live in cities will depend not on just the tools, but their intelligent application given current systemic obstacles, some of which are highlighted in the article. Of course, all the emerging technologies mentioned are dependent on ubiquitous, economical, reliable, safe and secure networks (wired and wireless) and network service providers

    Perspectives of Integrated “Next Industrial Revolution” Clusters in Poland and Siberia

    Get PDF
    Rozdział z: Functioning of the Local Production Systems in Central and Eastern European Countries and Siberia. Case Studies and Comparative Studies, ed. Mariusz E. Sokołowicz.The paper presents the mapping of potential next industrial revolution clusters in Poland and Siberia. Deindustrialization of the cities and struggles with its consequences are one of the fundamental economic problems in current global economy. Some hope to find an answer to that problem is associated with the idea of next industrial revolution and reindustrialization initiatives. In the paper, projects aimed at developing next industrial revolution clusters are analyzed. The objective of the research was to examine new industrial revolution paradigm as a platform for establishing university-based trans-border industry clusters in Poland and Siberia47 and to raise awareness of next industry revolution initiatives.Monograph financed under a contract of execution of the international scientific project within 7th Framework Programme of the European Union, co-financed by Polish Ministry of Science and Higher Education (title: “Functioning of the Local Production Systems in the Conditions of Economic Crisis (Comparative Analysis and Benchmarking for the EU and Beyond”)). Monografia sfinansowana w oparciu o umowę o wykonanie projektu między narodowego w ramach 7. Programu Ramowego UE, współfinansowanego ze środków Ministerstwa Nauki i Szkolnictwa Wyższego (tytuł projektu: „Funkcjonowanie lokalnych systemów produkcyjnych w warunkach kryzysu gospodarczego (analiza porównawcza i benchmarking w wybranych krajach UE oraz krajach trzecich”))

    Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case

    Full text link
    [EN] During the past few decades, the combination of flourishing maritime commerce and urban population increases has made port-cities face several challenges. Smart Port-Cities of the future will take advantage of the newest IoT technologies to tackle those challenges in a joint fashion from both the city and port side. A specific matter of interest in this work is how to obtain reliable, measurable indicators to establish port-city policies for mutual benefit. This paper proposes an IoTbased software framework, accompanied with a methodology for defining, calculating, and predicting composite indicators that represent real-world phenomena in the context of a Smart PortCity. This paper envisions, develops, and deploys the framework on a real use-case as a practice experiment. The experiment consists of deploying a composite index for monitoring traffic congestion at the port-city interface in Thessaloniki (Greece). Results were aligned with the expectations, validated through nine scenarios, concluding with delivery of a useful tool for interested actors at Smart Port-Cities to work over and build policies upon.This research was funded, by the European Commission, via the agency INEA, under the H2020-project PIXEL, grant number 769355, and, when applicable, by the H2020-project DataPorts, grant number 871493, via the DG-CONNECT agency.Lacalle, I.; Belsa, A.; Vaño, R.; Palau Salvador, CE. (2020). Framework and Methodology for Establishing Port-City Policies Based on Real-Time Composite Indicators and IoT: A Practical Use-Case. Sensors. 20(15):1-41. https://doi.org/10.3390/s20154131S1412015Urban Population Growthhttps://www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/Smart Port Cityhttps://maritimestreet.fr/smart-port-city/The World’s 33 Megacitieshttps://www.msn.com/en-us/money/realestate/the-worlds-33-megacities/ar-BBUaR3vDocksTheFuture Project Maritime Traffic Analysis and Forecast Review-Key Resultshttps://www.docksthefuture.eu/wp-content/uploads/2020/04/Attachment_0-2019-09-09T135818.886-1.pdfHamburg Port Authority: SmartPORThttps://www.hamburg-port-authority.de/en/hpa-360/smartport/Guo, H., Wang, L., Chen, F., & Liang, D. (2014). Scientific big data and Digital Earth. Chinese Science Bulletin, 59(35), 5066-5073. doi:10.1007/s11434-014-0645-3AIVP Agenda 2030 for Sustainable Port-Citieshttps://www.aivpagenda2030.com/Urban Transport Challengeshttps://transportgeography.org/?page_id=4621Passenger Cars in the EUhttps://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_cars_in_the_EUAverage CO2 Emissions from New Cars and Vans Registered in Europe Increased in 2018, Requiring Significant Emission Reductions to Meet the 2020 Targetshttps://ec.europa.eu/clima/news/average-co2-emissions-new-cars-and-vans-registered-europe-increased-2018-requiring-significant_en7 Smart City Solutions to Reduce Traffic Congestionhttps://www.geotab.com/blog/reduce-traffic-congestion/The Port and the City—Thoughts on the Relation between Cities and Portshttps://theportandthecity.wordpress.com/Yau, K.-L. A., Peng, S., Qadir, J., Low, Y.-C., & Ling, M. H. (2020). Towards Smart Port Infrastructures: Enhancing Port Activities Using Information and Communications Technology. IEEE Access, 8, 83387-83404. doi:10.1109/access.2020.2990961Two Projects Led by Valenciaport Win the IAPH World Port Sustainability Awards 2020—Valenciaporthttps://www.valenciaport.com/en/two-projects-led-by-valenciaport-win-the-iaph-world-port-sustainability-awards-2020/Ahlgren, B., Hidell, M., & Ngai, E. C.-H. (2016). Internet of Things for Smart Cities: Interoperability and Open Data. IEEE Internet Computing, 20(6), 52-56. doi:10.1109/mic.2016.124Inkinen, T., Helminen, R., & Saarikoski, J. (2019). Port Digitalization with Open Data: Challenges, Opportunities, and Integrations. Journal of Open Innovation: Technology, Market, and Complexity, 5(2), 30. doi:10.3390/joitmc5020030Analytical Report 4: Open Datain Citieshttps://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n4_-_open_data_in_cities_v1.0_final.pdfAnalytical Report 6: Open Datain Cities 2https://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n6_-_open_data_in_cities_2_-_final-clean.pdfINTER-IoT Deliverableshttps://inter-iot.eu/deliverablesActivage Project D3.1 Report on IoT European Platformshttps://www.activageproject.eu/docs/downloads/activage_public_deliverables/ACTIVAGE_D3.1_M3_ReportonIoTEuropeanPlatforms_V1.0.pdfThe Open Source Platform for Our Smart Digital Future—FIWAREhttps://www.fiware.org/FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/index.htmlApache Kafkahttps://kafka.apache.org/FIWARE Orion Context Brokerhttps://fiware-orion.readthedocs.io/en/master/Saborido, R., & Alba, E. (2020). Software systems from smart city vendors. Cities, 101, 102690. doi:10.1016/j.cities.2020.102690Santana, E. F. Z., Chaves, A. P., Gerosa, M. A., Kon, F., & Milojicic, D. S. (2018). Software Platforms for Smart Cities. ACM Computing Surveys, 50(6), 1-37. doi:10.1145/3124391Smart Citieshttps://www.fiware.org/community/smart-cities/Araujo, V., Mitra, K., Saguna, S., & Åhlund, C. (2019). Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing, 132, 250-261. doi:10.1016/j.jpdc.2018.12.010Ismagilova, E., Hughes, L., Dwivedi, Y. K., & Raman, K. R. (2019). Smart cities: Advances in research—An information systems perspective. International Journal of Information Management, 47, 88-100. doi:10.1016/j.ijinfomgt.2019.01.004Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. doi:10.1080/10630732.2014.942092Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589-606. doi:10.1016/j.measurement.2018.07.067Samih, H. (2019). Smart cities and internet of things. Journal of Information Technology Case and Application Research, 21(1), 3-12. doi:10.1080/15228053.2019.1587572Lanza, J., Sánchez, L., Gutiérrez, V., Galache, J., Santana, J., Sotres, P., & Muñoz, L. (2016). Smart City Services over a Future Internet Platform Based on Internet of Things and Cloud: The Smart Parking Case. Energies, 9(9), 719. doi:10.3390/en9090719A Novel Architecture for Modelling, Virtualising and Managing the Energy Consumption of Household Appliances|AIM Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224621Intelligent Use of Buildings’ Energy Information|IntUBE Project|FP7|CORDIS|European Commissionhttps://cordis.europa.eu/project/id/224286Scuotto, V., Ferraris, A., & Bresciani, S. (2016). Internet of Things: applications and challenges in smart cities. A case study of IBM smart city projects. Business Process Management Journal, 22(2). doi:10.1108/bpmj-05-2015-0074Molavi, A., Lim, G. J., & Race, B. (2019). A framework for building a smart port and smart port index. International Journal of Sustainable Transportation, 14(9), 686-700. doi:10.1080/15568318.2019.1610919Moustaka, V., Vakali, A., & Anthopoulos, L. G. (2019). A Systematic Review for Smart City Data Analytics. ACM Computing Surveys, 51(5), 1-41. doi:10.1145/3239566Alam, M., Dupras, J., & Messier, C. (2016). A framework towards a composite indicator for urban ecosystem services. Ecological Indicators, 60, 38-44. doi:10.1016/j.ecolind.2015.05.035PIXEL Project D5.1 Environmental Factors and Mapping to Pilotshttps://pixel-ports.eu/wp-content/uploads/2020/05/D5.1-Environmental-aspects-and-mapping-to-pilots.pdfEconomic Sentiment Indicator—Eurostathttps://ec.europa.eu/eurostat/web/products-datasets/product?code=teibs010Human Development Index (HDI)|Human Development Reportshttp://hdr.undp.org/en/content/human-development-index-hdiCOIN|Competence Centre on Composite Indicators and Scoreboardshttps://composite-indicators.jrc.ec.europa.eu/CITYkeys Projecthttp://www.citykeys-project.eu/citykeys/homeCITYkeys D1-4 Indicators for Smart City Projects and Smart Citieshttp://nws.eurocities.eu/MediaShell/media/CITYkeysD14Indicatorsforsmartcityprojectsandsmartcities.pdfMake Healthy Choices Easier Options—Scientific Americanhttps://www.scientificamerican.com/podcast/episode/make-healthy-choices-easier-options-12-09-20/FIWARE E Interoperabilidad Para Smart Citieshttps://www.apegr.org/images/descargas/J7OctESMARTCITY/2PresentacionFIWARE.pdfChen, G., Govindan, K., & Yang, Z. (2013). Managing truck arrivals with time windows to alleviate gate congestion at container terminals. International Journal of Production Economics, 141(1), 179-188. doi:10.1016/j.ijpe.2012.03.033Patel, N., & Mukherjee, A. B. (2015). Assessment of network traffic congestion through Traffic Congestability Value (TCV): a new index. Bulletin of Geography. Socio-economic Series, 30(30), 123-134. doi:10.1515/bog-2015-0039Aimsun Live: Model Every Movement at Every Momenthttps://www.aimsun.com/aimsun-live/PTV Vissim: Traffic Simulation Softwarehttps://www.ptvgroup.com/en/solutions/products/ptv-vissim/IBM Traffic Prediction Toolhttps://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=1248Veins: The Open Source Vehicular Network Simulation Frameworkhttps://veins.car2x.org/Mena-Yedra, R., Gavaldà, R., & Casas, J. (2017). Adarules: Learning rules for real-time road-traffic prediction. Transportation Research Procedia, 27, 11-18. doi:10.1016/j.trpro.2017.12.106PIXEL Projecthttps://pixel-ports.euReference Architectural Model Industrie 4.0 (rami 4.0)https://www.plattform-i40.de/PI40/Navigation/EN/Home/home.htmlSethi, P., & Sarangi, S. R. (2017). Internet of Things: Architectures, Protocols, and Applications. Journal of Electrical and Computer Engineering, 2017, 1-25. doi:10.1155/2017/9324035Containers & Containerization—The Pros and Conshttps://spin.atomicobject.com/2019/05/24/containerization-pros-cons/Pyngsi Frameworkhttps://github.com/pixel-ports/pyngsiPIXEL Project D6.2 PIXEL Information System Architecture and Design—Version 2https://pixel-ports.eu/wp-content/uploads/2020/05/D6.2-PIXEL-Information-System-architecture-and-design-v2.pdfApache Hivehttps://hive.apache.org/MySQLhttps://www.mysql.com/MariaDB Serverhttps://mariadb.org/Elasticsearchhttps://www.elastic.co/elasticsearch/MongoDBhttps://www.mongodb.com/Node-REDhttps://nodered.org/Swarm Mode Overview | Docker Documentationhttps://docs.docker.com/engine/swarm/Kuberneteshttps://kubernetes.io/PIXEL Project D6.3 PIXEL Data Acquisition, Information Hub and Data Representation v1https://pixel-ports.eu/wp-content/uploads/2020/05/D6.3_PIXEL-data-acquisition-information-hub-and-data-representation-v1.pdfOverview of Docker Compose|Docker Documentationhttps://docs.docker.com/compose/Kibana: Explore, Visualize, Discover Datahttps://www.elastic.co/kibanaGrafana: The Open Observability Platformshttps://grafana.com/Vue.jshttps://vuejs.org/PIXEL Project D5.2 PEI Definition and Algorithms v1https://pixel-ports.eu/wp-content/uploads/2020/05/D5.2-PEI-Definition-and-Algorithms-v1.pdfKeyPerformanceIndicator—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/KeyPerformanceIndicator/doc/spec/index.htmlWhat Is a Container?|App Containerization|Dockerhttps://www.docker.com/resources/what-containerGarcia-Alonso, L., Moura, T. G. Z., & Roibas, D. (2020). The effect of weather conditions on port technical efficiency. Marine Policy, 113, 103816. doi:10.1016/j.marpol.2020.103816TrafficThess—LIVE Traffic in Thessaloniki, Greecehttps://www.trafficthess.imet.gr/National Observatory of Athens—Meteo—Stations’ Live Data and Databasehttp://stratus.meteo.noa.gr/frontHow to Use Smart Data Models in Your Projects—FIWARE Data Modelshttps://fiware-datamodels.readthedocs.io/en/latest/howto/index.htmlGan, X., Fernandez, I. C., Guo, J., Wilson, M., Zhao, Y., Zhou, B., & Wu, J. (2017). When to use what: Methods for weighting and aggregating sustainability indicators. Ecological Indicators, 81, 491-502. doi:10.1016/j.ecolind.2017.05.068Wilson, M. C., & Wu, J. (2016). The problems of weak sustainability and associated indicators. International Journal of Sustainable Development & World Ecology, 24(1), 44-51. doi:10.1080/13504509.2015.1136360Kumar, S. V., & Vanajakshi, L. (2015). Short-term traffic flow prediction using seasonal ARIMA model with limited input data. European Transport Research Review, 7(3). doi:10.1007/s12544-015-0170-8Prophet: Forecastig at Scalehttps://facebook.github.io/prophet/PIXEL Project D4.4 PredictiveAlgorithms v2https://pixel-ports.eu/wp-content/uploads/2020/05/PIXEL_D4.4_Predictive-Algorithms_v2.0_Final.pdfProject Jupyterhttps://jupyter.org/FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/NGSIElasticsearchSink—FIWARE Cygnushttps://fiware-cygnus.readthedocs.io/en/latest/cygnus-ngsi/flume_extensions_catalogue/ngsi_elasticsearch_sink/index.htmlNode.jshttps://nodejs.org/Elasticsearch Node.js Client [7.x]https://www.elastic.co/guide/en/elasticsearch/client/javascript-api/current/index.htmlApache HTTP Server Projecthttps://httpd.apache.org/Everything You Need to Know about Min-Max Normalization: A Python Tutorialhttps://towardsdatascience.com/everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79OpenStreetMaphttps://www.openstreetmap.org/Leaflet—A JavaScript Library for Interactive Mapshttps://leafletjs.com/AmCharts: JavaScript Charts & Mapshttps://www.amcharts.com/FIWARE Cataloguehttps://www.fiware.org/developers/catalogue/Findlow, S. (2019). ‘Citizenship’ and ‘Democracy Education’: identity politics or enlightened political participation? British Journal of Sociology of Education, 40(7), 1004-1013. doi:10.1080/01425692.2019.1656910Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R. H., Morrow, M. J., & Polakos, P. A. (2018). A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges. IEEE Communications Surveys & Tutorials, 20(1), 416-464. doi:10.1109/comst.2017.277115

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    corecore