22,212 research outputs found

    Building nonlinear data models with self-organizing maps

    Get PDF
    We study the extraction of nonlinear data models in high dimensional spaces with modified self-organizing maps. Our algorithm maps lower dimensional lattice into a high dimensional space without topology violations by tuning the neighborhood widths locally. The approach is based on a new principle exploiting the specific dynamical properties of the first order phase transition induced by the noise of the data. The performance of the algorithm is demonstrated for one- and two-dimensional principal manifolds and for sparse data sets

    A machine learning approach with verification of predictions and assisted supervision for a rule-based network intrusion detection system

    Get PDF
    Network security is a branch of network management in which network intrusion detection systems provide attack detection features by monitorization of traffic data. Rule-based misuse detection systems use a set of rules or signatures to detect attacks that exploit a particular vulnerability. These rules have to be handcoded by experts to properly identify vulnerabilities, which results in misuse detection systems having limited extensibility. This paper proposes a machine learning layer on top of a rule-based misuse detection system that provides automatic generation of detection rules, prediction verification and assisted classification of new data. Our system offers an overall good performance, while adding an heuristic and adaptive approach to existing rule-based misuse detection systems

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    Complex Systems Science: Dreams of Universality, Reality of Interdisciplinarity

    Get PDF
    Using a large database (~ 215 000 records) of relevant articles, we empirically study the "complex systems" field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obtain a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific "trading zones", ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).Comment: Journal of the American Society for Information Science and Technology (2012) 10.1002/asi.2264

    A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps

    Get PDF
    The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving ma

    Classifying Amharic News Text Using Self-Organizing Maps

    Get PDF
    The paper addresses using artificial neural networks for classification of Amharic news items. Amharic is the language for countrywide communication in Ethiopia and has its own writing system containing extensive systematic redundancy. It is quite dialectally diversified and probably representative of the languages of a continent that so far has received little attention within the language processing field. The experiments investigated document clustering around user queries using Self-Organizing Maps, an unsupervised learning neural network strategy. The best ANN model showed a precision of 60.0% when trying to cluster unseen data, and a 69.5% precision when trying to classify it

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus

    Computational physics of the mind

    Get PDF
    In the XIX century and earlier such physicists as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of mind. In this paper several approaches relevant to modeling of mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From computational point of view realistic models require massively parallel architectures
    corecore