68,851 research outputs found

    Building Knowledge Bases for the Generation of Software Documentation

    Full text link
    Automated text generation requires a underlying knowledge base from which to generate, which is often difficult to produce. Software documentation is one domain in which parts of this knowledge base may be derived automatically. In this paper, we describe \drafter, an authoring support tool for generating user-centred software documentation, and in particular, we describe how parts of its required knowledge base can be obtained automatically.Comment: 6 pages, from COLING-9

    Factors shaping the evolution of electronic documentation systems

    Get PDF
    The main goal is to prepare the space station technical and managerial structure for likely changes in the creation, capture, transfer, and utilization of knowledge. By anticipating advances, the design of Space Station Project (SSP) information systems can be tailored to facilitate a progression of increasingly sophisticated strategies as the space station evolves. Future generations of advanced information systems will use increases in power to deliver environmentally meaningful, contextually targeted, interconnected data (knowledge). The concept of a Knowledge Base Management System is emerging when the problem is focused on how information systems can perform such a conversion of raw data. Such a system would include traditional management functions for large space databases. Added artificial intelligence features might encompass co-existing knowledge representation schemes; effective control structures for deductive, plausible, and inductive reasoning; means for knowledge acquisition, refinement, and validation; explanation facilities; and dynamic human intervention. The major areas covered include: alternative knowledge representation approaches; advanced user interface capabilities; computer-supported cooperative work; the evolution of information system hardware; standardization, compatibility, and connectivity; and organizational impacts of information intensive environments

    PlanetOnto: from news publishing to integrated knowledge management support

    Get PDF
    Given a scenario in which members of an academic community collaboratively construct and share an archive of news items, several knowledge management challenges arise. The authors' integrated suite of tools, called PlanetOnto, supports a speedy but high quality publishing process, allows ontology-driven document formalization and augments standard browsing and search facilities with deductive knowledge retrieva

    e-Science Infrastructure for the Social Sciences

    Get PDF
    When the term „e-Science“ became popular, it frequently was referred to as “enhanced science” or “electronic science”. More telling is the definition ‘e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it’ (Taylor, 2001). The question arises to what extent can the social sciences profit from recent developments in e- Science infrastructure? While computing, storage and network capacities so far were sufficient to accommodate and access social science data bases, new capacities and technologies support new types of research, e.g. linking and analysing transactional or audio-visual data. Increasingly collaborative working by researchers in distributed networks is efficiently supported and new resources are available for e-learning. Whether these new developments become transformative or just helpful will very much depend on whether their full potential is recognized and creatively integrated into new research designs by theoretically innovative scientists. Progress in e-Science was very much linked to the vision of the Grid as “a software infrastructure that enables flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions and resources’ and virtually unlimited computing capacities (Foster et al. 2000). In the Social Sciences there has been considerable progress in using modern IT- technologies for multilingual access to virtual distributed research databases across Europe and beyond (e.g. NESSTAR, CESSDA – Portal), data portals for access to statistical offices and for linking access to data, literature, project, expert and other data bases (e.g. Digital Libraries, VASCODA/SOWIPORT). Whether future developments will need GRID enabling of social science databases or can be further developed using WEB 2.0 support is currently an open question. The challenges here are seamless integration and interoperability of data bases, a requirement that is also stipulated by internationalisation and trans-disciplinary research. This goes along with the need for standards and harmonisation of data and metadata. Progress powered by e- infrastructure is, among others, dependent on regulatory frameworks and human capital well trained in both, data science and research methods. It is also dependent on sufficient critical mass of the institutional infrastructure to efficiently support a dynamic research community that wants to “take the lead without catching up”.

    Experiences from Software Engineering of Large Scale AMR Multiphysics Code Frameworks

    Full text link
    Among the present generation of multiphysics HPC simulation codes there are many that are built upon general infrastructural frameworks. This is especially true of the codes that make use of structured adaptive mesh refinement (SAMR) because of unique demands placed on the housekeeping aspects of the code. They have varying degrees of abstractions between the infrastructure such as mesh management and IO and the numerics of the physics solvers. In this experience report we summarize the experiences and lessons learned from two of such major software efforts, FLASH and Chombo.Comment: Experience Repor

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    Overview of methodologies for building ontologies

    Get PDF
    A few research groups are now proposing a series of steps and methodologies for developing ontologies. However, mainly due to the fact that Ontological Engineering is still a relatively immature discipline, each work group employs its own methodology. Our goal is to present the most representative methodologies used in ontology development and to perform an analysis of such methodologies against the same framework of reference. So, the goal of this paper is not to provide new insights about methodologies, but to put it all in one place and help people to select which methodology to use
    corecore