54 research outputs found

    Assessing the Role and Regulatory Impact of Digital Assets in Decentralizing Finance

    Get PDF
    This project will explore the development of decentralized financial (DeFi) markets since the first introduction of digital assets created through the application of a form of distributed ledger technology (DLT), known as blockchain, in 2008. More specifically, a qualitative inquiry of the role of digital assets in relation to traditional financial markets infrastructure will be conducted in order to answer the following questions: (i) can the digital asset and decentralized financial markets examined in this thesis co-exist with traditional assets and financial markets, and, if so, (ii) are traditional or novel forms of regulation (whether financial or otherwise) needed or desirable for the digital asset and decentralized financial markets examined herein? The aim of this project will be to challenge a preliminary hypothesis that traditional and decentralized finance can be compatible; provided, that governments and other centralized authorities approach market innovations as an opportunity to improve existing monetary infrastructure and delivery of financial services (both in the public and private sector), rather than as an existential threat. Thus, this thesis seeks to establish that, through collaborating with private markets to identify the public good to which DeFi markets contribute, the public sector can foster an appropriate environment which is both promotive and protective of the public interest without unduly stifling innovation and progress

    Commons in Design

    Get PDF
    The scarcity of resources, climate change, and the digitalization of everyday life are fuelling the economy of swapping, sharing, and lending—all of which are in some way linked to a culture of commoning. In this context, we understand commons as community-based processes that use, collectively manage, and organize generally accessible resources—referring to both goods and knowledge. Commons in Design explores the meaning and impact of commons—especially knowledge-based peer commons—and acts of commoning in design. It discusses networked, participatory, and open procedures based on the commons and commoning, testing models that negotiate the use of commons within design processes. In doing so, it critically engages with questions regarding designers’ positionings, everyday practices, self-understandings, ways of working, and approaches to education

    Data journeys in the sciences

    Get PDF
    This is the final version. Available from Springer via the DOI in this record. This groundbreaking, open access volume analyses and compares data practices across several fields through the analysis of specific cases of data journeys. It brings together leading scholars in the philosophy, history and social studies of science to achieve two goals: tracking the travel of data across different spaces, times and domains of research practice; and documenting how such journeys affect the use of data as evidence and the knowledge being produced. The volume captures the opportunities, challenges and concerns involved in making data move from the sites in which they are originally produced to sites where they can be integrated with other data, analysed and re-used for a variety of purposes. The in-depth study of data journeys provides the necessary ground to examine disciplinary, geographical and historical differences and similarities in data management, processing and interpretation, thus identifying the key conditions of possibility for the widespread data sharing associated with Big and Open Data. The chapters are ordered in sections that broadly correspond to different stages of the journeys of data, from their generation to the legitimisation of their use for specific purposes. Additionally, the preface to the volume provides a variety of alternative “roadmaps” aimed to serve the different interests and entry points of readers; and the introduction provides a substantive overview of what data journeys can teach about the methods and epistemology of research.European CommissionAustralian Research CouncilAlan Turing Institut

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    EVOLUTION OF THE SUBCONTINENTAL LITHOSPHERE DURING MESOZOIC TETHYAN RIFTING: CONSTRAINTS FROM THE EXTERNAL LIGURIAN MANTLE SECTION (NORTHERN APENNINE, ITALY)

    Get PDF
    Our study is focussed on mantle bodies from the External Ligurian ophiolites, within the Monte Gavi and Monte Sant'Agostino areas. Here, two distinct pyroxenite-bearing mantle sections were recognized, mainly based on their plagioclase-facies evolution. The Monte Gavi mantle section is nearly undeformed and records reactive melt infiltration under plagioclase-facies conditions. This process involved both peridotites (clinopyroxene-poor lherzolites) and enclosed spinel pyroxenite layers, and occurred at 0.7–0.8 GPa. In the Monte Gavi peridotites and pyroxenites, the spinel-facies clinopyroxene was replaced by Ca-rich plagioclase and new orthopyroxene, typically associated with secondary clinopyroxene. The reactive melt migration caused increase of TiO2 contents in relict clinopyroxene and spinel, with the latter also recording a Cr2O3 increase. In the Monte Gavi peridotites and pyroxenites, geothermometers based on slowly diffusing elements (REE and Y) record high temperature conditions (1200-1250 °C) related to the melt infiltration event, followed by subsolidus cooling until ca. 900°C. The Monte Sant'Agostino mantle section is characterized by widespread ductile shearing with no evidence of melt infiltration. The deformation recorded by the Monte Sant'Agostino peridotites (clinopyroxene-rich lherzolites) occurred at 750–800 °C and 0.3–0.6 GPa, leading to protomylonitic to ultramylonitic textures with extreme grain size reduction (10–50 μm). Compared to the peridotites, the enclosed pyroxenite layers gave higher temperature-pressure estimates for the plagioclase-facies re-equilibration (870–930 °C and 0.8–0.9 GPa). We propose that the earlier plagioclase crystallization in the pyroxenites enhanced strain localization and formation of mylonite shear zones in the entire mantle section. We subdivide the subcontinental mantle section from the External Ligurian ophiolites into three distinct domains, developed in response to the rifting evolution that ultimately formed a Middle Jurassic ocean-continent transition: (1) a spinel tectonite domain, characterized by subsolidus static formation of plagioclase, i.e. the Suvero mantle section (Hidas et al., 2020), (2) a plagioclase mylonite domain experiencing melt-absent deformation and (3) a nearly undeformed domain that underwent reactive melt infiltration under plagioclase-facies conditions, exemplified by the the Monte Sant'Agostino and the Monte Gavi mantle sections, respectively. We relate mantle domains (1) and (2) to a rifting-driven uplift in the late Triassic accommodated by large-scale shear zones consisting of anhydrous plagioclase mylonites. Hidas K., Borghini G., Tommasi A., Zanetti A. & Rampone E. 2021. Interplay between melt infiltration and deformation in the deep lithospheric mantle (External Liguride ophiolite, North Italy). Lithos 380-381, 105855

    Medical innovation : using mechatronics engineering to reduce inequities in healthcare.

    Get PDF
    Medical device innovation provides access to healthcare. Innovations come about be- cause of pressures, in particular financial pressures, and access to care. With increasing interoperability of devices, distinction is made between devices with specific interoperability (SIO) only able to communicate with a pre-determined range of other devices, and non-specific interoperability (NSIO). Devices with NSIO pose substantially greater potential benefits by allowing long-term system wide innovations. Scales of innovation are discussed, where short-term innovations meet an immediate need, such as the inundation of intensive care units (ICUs) in the COVID-19 pandemic. Medium-term innovations see either incremental increase in efficiencies, or an increase in interoperability which enables subsequent innovation. Long-term innovations are disruptive, systemic changes, often enabled through the use of increasing interoperability. The uptake of innovation is often lacking, but through the use of a framework such as Tech-ISM the chance of adoption is increased. This framework sees establishment and fostering of close relationships with a range of end users, decision makers, and industry partners. Diabetes technologies are presented as examples of innovation. Insulin pumps are an effective method of delivering insulin, and see considerable benefit in control. Widespread adoption of insulin pumps is posed through the development of an ultra-low cost (ULC) insulin pump, made possible by the separation of hardware and computation, and costing 12 × −20× less than currently-available devices, both for a traditional-style insulin pump, and also a novel spring-driven design. Initial results show similar accuracy to current commercially-available insulin pumps, with a mean error of 0.64%, the same as the MiniMed™640G (Medtronic, Dublin, Ire- land) for 1 U boluses, and mean error of 0.06% for 10 U boluses. Basal windows of 1 hour are similarly accurate, with 100% within ±15%, 92% within ±10%, and 84% within ±5%, again very similar to the MiniMed™640G. The ULC insulin pump is a solution to the economic infeasibility of insulin pumps for the majority of New Zealanders. System-wide adoption of insulin pumps would see considerable economic benefit for New Zealand, in particular with a patch pump. Several possible adoption scenarios are presented. Annually, direct savings associated with less insulin use and current public investment in insulin pumps is expected to total 6.6M−6.6M - 25.3M, indirect savings from reduction of expensive complications are expected to save 2.5M−2.5M - 25.5M, with direct costs of 0.8M−0.8M - 25.7M. Projections are for a total overall system saving of 8.3Mwithnoadditionaluptakeofinsulinpumps,butonlyreplacingcurrentinsulinpumpswiththeULCalternative,to8.3M with no additional uptake of insulin pumps, but only replacing current insulin pumps with the ULC alternative, to 25.0M with widespread adoption. These figures do not account for additional savings made possible through future long-term development of smart, automated healthcare systems. A continuous glucose monitor (CGM) is a device that estimates blood glucose (BG) every 1-5 minutes, replacing discrete, invasive self-monitored blood glucose (SMBG) measure- ments as required four to ten per day currently for approximately 40,000 - 60,000 New Zealanders with diabetes who administer insulin. Current CGM use is limited, but rel- atively unknown, due to no public funding, with expert estimates at 2-8% prevalence among individuals with type-one diabetes. A low-cost alternative is presented in the form of the blood optical biosensor CGM (BOB CGM) at an annual cost 10 × −20× less expensive than current devices. Initial, un-calibrated results show promise, with 91% of BG results deemed clinically accurate, and a further 8% sufficiently accurate to not cause treatment error. Fundamentally, cost savings arise from allowing access to otherwise inaccessible data, and thus turning the current data monopoly into a data market. Substantial economic benefit is seen from direct savings from current monitoring of diabetes disease progressions with SMBG and glycated haemoglobin (HbA1c), and also indirect savings from earlier identification of worsening diabetes control. Various adoption scenarios are presented, with overall annual economic savings of 1.9M−1.9M - 25.1M. Another medical innovation is presented in the form of the actuated, closed-loop, time- series inspiratory valve (ACTIV) dual ventilation system. This innovation is a short- term example, developed under pressure of inundation of the healthcare system due to the novel coronavirus disease (COVID-19). The basic operating premise is ventilatory effort from a single mechanical ventilator is delivered first to one patient, and subsequent to a valve switching state, to a second patient. The system is a solution that addresses valid concern for multiple ventilation from a consensus of oversight bodies for ICU treatment, in particular personalised therapy and monitoring, especially in the case of changing pathology. The system is designed to be low-cost, robust, portable, and readily manufactured in low-resource environments. Thus, it has an Arduino (Arduino, Massachusetts, USA) controller, and requires a 5.0 V power supply. The system requires a flow and pressure sensor for detection of inspiration, and sub- sequent valve switching. A custom-made 3D-printed Venturi interfaced with simple electronics with an analogue 0.0 − 5.0 V output signal is presented. The sensor is validated against data from mechanical ventilation devices to be accurate over the range of 5 − 75L · min−1, with a Pearson Correlation ≥ 0.95 for flow and pressure, typically ≥ 0.97 in 5 S bins at fs = 50 Hz. Additional components are a 3-D printed pressure drop device in the form of the PANDAPeep Gen2 Inline valve, and off-the-shelf one-way valves, airway filters, and 22 mm⊘ tubing. The switching ACTIV valve is another 3D-printed component, and uses a common HXT12K servo motor, or similar, for interoperability. The Arduino-based control system is a basic finite state machine (FSM) relying on low-pass filtered flow sensor data, implemented through a circular buffer, for state changes. These state changes, in com- bination with various necessary delays for safety, dictate the change of state of the ACTIV valve, and thus to which patient ventilation effort is delivered. An example of two considerably unbalance patients, with compliance C1 = 0.10 L · cmH2O−1and C2 = 0.05 L · cmH2O−1, being safely and efficiently balanced to achieve equal tidal volume is demonstrated to show individualised therapy and monitoring. Without innovations such as the diabetes technologies and ACTIV system, care will become increasingly rationed. Rationing of diabetes devices with high effectiveness, but also high cost, is already seen in the lack of public funding for CGM devices, and funding for only 8-10% of individuals with type-one diabetes to access insulin pumps, despite significant proven benefits of both of these devices. Since 2000, increases in direct out- of-pocket expenditure have grown an average of 4.3% per annum, compared to median wage growth of 3.2%, and inflation of 2.6%. These trends show that the rationing of healthcare is being seen in a reduction of access to publicly-funded services. Given an average annual wage increase of only 1.6% for the lowest 20th centile, individuals who are least well off are less able to afford the required personal expenditure to attain the same access the healthcare. Therefore, access to healthcare is seeing worsening equity of access. With increasing demand for healthcare, and a taxation base stagnant at best, relying only on intrinsic changes, New Zealand faces significant taxation increases, or drastic reductions in healthcare services. The alternative is to increase the efficiency of healthcare delivery methods, using extrinsic, disruptive changes. These changes are only made possible through innovation informed by strong clinical insight, developing mechatronic devices with broad, non-specific interoperability, if not open-source design. This approach provides equitable access to care, and provides the necessary framework for automation of healthcare services, including diagnostics, prognostics, and personalised care models under a one-method-fits all approach. This widespread technological innovation and adoption poses significant increase of access to care, combating current inequities

    Impact of Etna’s volcanic emission on major ions and trace elements composition of the atmospheric deposition

    Get PDF
    Mt. Etna, on the eastern coast of Sicily (Italy), is one of the most active volcanoes on the planet and it is widely recognized as a big source of volcanic gases (e.g., CO2 and SO2), halogens, and a lot of trace elements, to the atmosphere in the Mediterranean region. Especially during eruptive periods, Etna’s emissions can be dispersed over long distances and cover wide areas. A group of trace elements has been recently brought to attention for their possible environmental and human health impacts, the Technology-critical elements. The current knowledge about their geochemical cycles is still scarce, nevertheless, recent studies (Brugnone et al., 2020) evidenced a contribution from the volcanic activity for some of them (Te, Tl, and REE). In 2021, in the framework of the research project “Pianeta Dinamico”, by INGV, a network of 10 bulk collectors was implemented to collect, monthly, atmospheric deposition samples. Four of these collectors are located on the flanks of Mt. Etna, other two are in the urban area of Catania and three are in the industrial area of Priolo, all most of the time downwind of the main craters. The last one, close to Cesarò (Nebrodi Regional Park), represents the regional background. The research aims to produce a database on major ions and trace element compositions of the bulk deposition and here we report the values of the main physical-chemical parameters and the deposition fluxes of major ions and trace elements from the first year of research. The pH ranged from 3.1 to 7.7, with a mean value of 5.6, in samples from the Etna area, while it ranged between 5.2 and 7.6, with a mean value of 6.4, in samples from the other study areas. The EC showed values ranging from 5 to 1032 μS cm-1, with a mean value of 65 μS cm-1. The most abundant ions were Cl- and SO42- for anions, Na+ and Ca+ for cations, whose mean deposition fluxes, considering all sampling sites, were 16.6, 6.8, 8.4, and 6.0 mg m-2 d, respectively. The highest deposition fluxes of volcanic refractory elements, such as Al, Fe, and Ti, were measured in the Etna’s sites, with mean values of 948, 464, and 34.3 μg m-2 d-1, respectively, higher than those detected in the other sampling sites, further away from the volcanic source (26.2, 12.4, 0.5 μg m-2 d-1, respectively). The same trend was also observed for volatile elements of prevailing volcanic origin, such as Tl (0.49 μg m-2 d-1), Te (0.07 μg m-2 d-1), As (0.95 μg m-2 d-1), Se (1.92 μg m-2 d-1), and Cd (0.39 μg m-2 d-1). Our preliminary results show that, close to a volcanic area, volcanic emissions must be considered among the major contributors of ions and trace elements to the atmosphere. Their deposition may significantly impact the pedosphere, hydrosphere, and biosphere and directly or indirectly human health

    Impact of geogenic degassing on C-isotopic composition of dissolved carbon in karst systems of Greece

    Get PDF
    The Earth C-cycle is complex, where endogenic and exogenic sources are interconnected, operating in a multiple spatial and temporal scale (Lee et al., 2019). Non-volcanic CO2 degassing from active tectonic structures is one of the less defined components of this cycle (Frondini et al., 2019). Carbon mass-balance (Chiodini et al., 2000) is a useful tool to quantify the geogenic carbon output from regional karst hydrosystems. This approach has been demonstrated for central Italy and may be valid also for Greece, due to the similar geodynamic settings. Deep degassing in Greece has been ascertained mainly at hydrothermal and volcanic areas, but the impact of geogenic CO2 released by active tectonic areas has not yet been quantified. The main aim of this research is to investigate the possible deep degassing through the big karst aquifers of Greece. Since 2016, 156 karst springs were sampled along most of the Greek territory. To discriminate the sources of carbon, the analysis of the isotopic composition of carbon was carried out. δ13CTDIC values vary from -16.61 to -0.91‰ and can be subdivided into two groups characterized by (a) low δ13CTDIC, and (b) intermediate to high δ13CTDIC with a threshold value of -6.55‰. The composition of the first group can be related to the mixing of organic-derived CO2 and the dissolution of marine carbonates. Springs of the second group, mostly located close to Quaternary volcanic areas, are linked to possible carbon input from deep sources
    • …
    corecore