328,600 research outputs found

    A Reference Architecture for Mobile Knowledge Management

    Get PDF
    Although mobile knowledge management (mKM) is being perceived as an emerging R&D field, its concepts and approaches are not well-settled, as opposed to the general field of Knowledge Management (KM). In this work, we try to establish a definition for mKM. Taking into account building blocks of KM in enterprises and the abstract use cases of mKM systems we introduce an reference architecture for mKM systems as a basis for verifying and comparing concepts and system architectures. Finally we address the potential of mKM to be suitable as a prototype model for mobile, situation-aware information processing in the field of Ambient Intelligence Environments

    Experimental analysis of multidimensional radio channels

    Get PDF
    In this thesis new systems for radio channel measurements including space and polarization dimensions are developed for studying the radio propagation in wideband mobile communication systems. Multidimensional channel characterization is required for building channel models for new systems capable of exploiting the spatial nature of the channel. It also gives insight into the dominant propagation mechanisms in complex radio environments, where their prediction is difficult, such as urban and indoor environments. The measurement systems are based on the HUT/IDC wideband radio channel sounder, which was extended to enable real-time multiple output channel measurements at practical mobile speeds at frequencies up to 18 GHz. Two dual-polarized antenna arrays were constructed for 2 GHz, having suitable properties for characterizing the 3-D spatial radio channel at both ends of a mobile communication link. These implementations and their performance analysis are presented. The usefulness of the developed measurement systems is demonstrated by performing channel measurements at 2 GHz and analyzing the experimental data. Spatial channels of both the mobile and base stations are analyzed, as well as the double-directional channel that fully characterizes the propagation between two antennas. It is shown through sample results that spatial domain channel measurements can be used to gain knowledge on the dominant propagation mechanisms or verify the current assumptions. Also new statistical information about scatterer distribution at the mobile station in urban environment is presented based on extensive real-time measurements. The developed techniques and collected experimental data form a good basis for further comparison with existing deterministic propagation models and development of new spatial channel models.reviewe

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Peran Teknologi dalam Transformasi Pendidikan: Perspektif dari Studi Kepustakaan

    Get PDF
    The transformation of education in the digital era leverages various technologies to enhance accessibility, effectiveness, and the overall quality of learning. Digital learning, virtual reality, and augmented reality provide innovative learning experiences, while data analytics and machine learning support personalized learning. Internet of Things (IoT) technology monitors health and resource efficiency in school environments. Blockchain reinforces the security of academic data and facilitates credential verification. Learning Management Systems (LMS) offer a centralized platform for the distribution of learning materials and online collaboration. Artificial Intelligence (AI) technology supports personal tutoring and cheating detection. Mobile learning (M-Learning) introduces learning through mobile devices, while robotics and School Information Management Systems (SIM School) aid in building interactivity and administrative efficiency. The utilization of these technologies not only transforms how we learn and teach but also creates an adaptive and responsive educational environment in the digital age

    Investigations On Human Perceptual Maps Using A Stereo-Vision Mobile Robot

    Get PDF
    Spatial cognition is a branch of cognitive psychology concerning the acquisition, organization, utilization, and revision of knowledge about spatial environments. A new computational theory of human spatial cognitive mapping has been proposed in the literature, and analyzed using a laser-based mobile robot. In contrast with the well-established SLAM (Simultaneous Localization and Mapping) approach that creates a precise and complete map of the environment, the proposed human perceptual map building procedure is more representative of spatial cognitive mapping in the human brain, whereby an imprecise and incomplete perceptual map of an environment can be created easily. The key steps in the methodology are capturing stereo-vision images of the environment, creating the tracked reference objects (TROs), tracking the number of remaining TROs, and expanding the map when the limiting points of the environment are reached. The main contribution of this research is on the use of computer vision techniques and computational mapping algorithms on a stereo-vision mobile robot for formulating the human perceptual map systematically, and evaluating the resulting human perceptual maps pertaining to both indoor and outdoor environments comprehensively. Validating the human perceptual maps using vision-based techniques is important for two reasons. Firstly, vision plays an important role in the development of human spatial cognition; secondly, computer vision systems are less expensive and information-rich in representing an environment. Specifically, computer vision techniques are first developed for analyzing the associated stereo images and retrieving the displacement information of a mobile robot, as well ascreating the necessary tracked reference objects. A number of computational mapping algorithms are then employed to build a human perceptual map of the environment in this research. Four real-world environments, namely two large indoor and two large outdoor environments, are empirically evaluated. The spatial geometry of the test environments vary, and the environments are subject to various natural effects including reflection and noise. The reflection and noise occurrin many parts of the images. Therefore, additional algorithms are developed in order to remove the reflection and noise. The removal of reflection and noise significantly reduces the number of TROs createdfor every immediate view. The outcomes indicate that the proposed computer vision techniques and computational mapping algorithms for human perceptual map building are robust and useful. They are able to create imprecise and incomplete human perceptual maps with good spatial representation of the overall environments. The map is imprecise and incomplete in the sense that it is not accurate in metric terms and has perceived surfaces missing. It is shown that both vision-based and the laser-based systems are able to computer a reasonably accurate spatial geometry of the tested environment
    corecore