1,790 research outputs found

    Building Footprint Generation Using Improved Generative Adversarial Networks

    Get PDF
    Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this work, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to conditional generative adversarial networks, the U-Net, and other networks. In addition, our method nearly removes all hyperparameters tuning.Comment: 5 page

    Pal-GAN: Palette-conditioned Generative Adversarial Networks

    Get PDF
    Recent advances in Generative Adversarial Networks (GANs) have shown great progress on a large variety of tasks. A common technique used to yield greater diversity of samples is conditioning on class labels. Conditioning on high-dimensional structured or unstructured information has also been shown to improve generation results, e.g. Image-to-Image translation. The conditioning information is provided in the form of human annotations, which can be expensive and difficult to obtain in cases where domain knowledge experts are needed. In this paper, we present an alternative: conditioning on low-dimensional structured information that can be automatically extracted from the input without the need for human annotators. Specifically, we propose a Palette-conditioned Generative Adversarial Network (Pal-GAN), an architecture-agnostic model that conditions on both a colour palette and a segmentation mask for high quality image synthesis. We show improvements on conditional consistency, intersection-over-union, and Fréchet inception distance scores. Additionally, we show that sampling colour palettes significantly changes the style of the generated images

    High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

    Full text link
    We present a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to low-resolution and still far from realistic. In this work, we generate 2048x1024 visually appealing results with a novel adversarial loss, as well as new multi-scale generator and discriminator architectures. Furthermore, we extend our framework to interactive visual manipulation with two additional features. First, we incorporate object instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object category. Second, we propose a method to generate diverse results given the same input, allowing users to edit the object appearance interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the quality and the resolution of deep image synthesis and editing.Comment: v2: CVPR camera ready, adding more results for edge-to-photo example

    Poly-GAN: Regularizing Polygons with Generative Adversarial Networks

    Get PDF
    Regularizing polygons involves simplifying irregular and noisy shapes of built environment objects (e.g. buildings) to ensure that they are accurately represented using a minimum number of vertices. It is a vital processing step when creating/transmitting online digital maps so that they occupy minimal storage space and bandwidth. This paper presents a data-driven and Deep Learning (DL) based approach for regularizing OpenStreetMap building polygon edges. The study introduces a building footprint regularization technique (Poly-GAN) that utilises a Generative Adversarial Network model trained on irregular building footprints and OSM vector data. The proposed method is particularly relevant for map features predicted by Machine Learning (ML) algorithms in the GIScience domain, where information overload remains a significant problem in many cartographic/LBS applications. It addresses the limitations of traditional cartographic regularization/generalization algorithms, which can struggle with producing both accurate and minimal representations of multisided built environment objects. Furthermore, future work proposes a way to test the method on even more complex object shapes to address this limitation

    Shape Generation using Spatially Partitioned Point Clouds

    Full text link
    We propose a method to generate 3D shapes using point clouds. Given a point-cloud representation of a 3D shape, our method builds a kd-tree to spatially partition the points. This orders them consistently across all shapes, resulting in reasonably good correspondences across all shapes. We then use PCA analysis to derive a linear shape basis across the spatially partitioned points, and optimize the point ordering by iteratively minimizing the PCA reconstruction error. Even with the spatial sorting, the point clouds are inherently noisy and the resulting distribution over the shape coefficients can be highly multi-modal. We propose to use the expressive power of neural networks to learn a distribution over the shape coefficients in a generative-adversarial framework. Compared to 3D shape generative models trained on voxel-representations, our point-based method is considerably more light-weight and scalable, with little loss of quality. It also outperforms simpler linear factor models such as Probabilistic PCA, both qualitatively and quantitatively, on a number of categories from the ShapeNet dataset. Furthermore, our method can easily incorporate other point attributes such as normal and color information, an additional advantage over voxel-based representations.Comment: To appear at BMVC 201

    Overcoming Missing and Incomplete Modalities with Generative Adversarial Networks for Building Footprint Segmentation

    Full text link
    The integration of information acquired with different modalities, spatial resolution and spectral bands has shown to improve predictive accuracies. Data fusion is therefore one of the key challenges in remote sensing. Most prior work focusing on multi-modal fusion, assumes that modalities are always available during inference. This assumption limits the applications of multi-modal models since in practice the data collection process is likely to generate data with missing, incomplete or corrupted modalities. In this paper, we show that Generative Adversarial Networks can be effectively used to overcome the problems that arise when modalities are missing or incomplete. Focusing on semantic segmentation of building footprints with missing modalities, our approach achieves an improvement of about 2% on the Intersection over Union (IoU) against the same network that relies only on the available modality

    DSM Building Shape Refinement from Combined Remote Sensing Images based on Wnet-cGANs

    Get PDF
    We describe the workflow of a digital surface models (DSMs) refinement algorithm using a hybrid conditional generative adversarial network (cGAN) where the generative part consists of two parallel networks merged at the last stage forming a WNet architecture. The inputs to the so-called WNet-cGAN are stereo DSMs and panchromatic (PAN) half-meter resolution satellite images. Fusing these helps to propagate fine detailed information from a spectral image and complete the missing 3D knowledge from a stereo DSM about building shapes. Besides, it refines the building outlines and edges making them more rectangular and sharp
    corecore