2,364 research outputs found

    Resource efficient redundancy using quorum-based cycle routing in optical networks

    Get PDF
    In this paper we propose a cycle redundancy technique that provides optical networks almost fault-tolerant point-to-point and multipoint-to-multipoint communications. The technique more importantly is shown to approximately halve the necessary light-trail resources in the network while maintaining the fault-tolerance and dependability expected from cycle-based routing. For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. Optimal communication quorum sets forming optical cycles based on light-trails have been shown to flexibly and efficiently route both point-to-point and multipoint-to-multipoint traffic requests. Commonly cycle routing techniques will use pairs of cycles to achieve both routing and fault-tolerance, which uses substantial resources and creates the potential for underutilization. Instead, we intentionally utilize redundancy within the quorum cycles for fault-tolerance such that almost every point-to-point communication occurs in more than one cycle. The result is a set of cycles with 96.60% - 99.37% fault coverage, while using 42.9% - 47.18% fewer resources.Comment: 17th International Conference on Transparent Optical Networks (ICTON), 5-9 July 2015. arXiv admin note: substantial text overlap with arXiv:1608.05172, arXiv:1608.0516

    The Raincore API for clusters of networking elements

    Get PDF
    Clustering technology offers a way to increase overall reliability and performance of Internet information flow by strengthening one link in the chain without adding others. We have implemented this technology in a distributed computing architecture for network elements. The architecture, called Raincore, originated in the Reliable Array of Independent Nodes, or RAIN, research collaboration between the California Institute of Technology and the US National Aeronautics and Space Agency's Jet Propulsion Laboratory. The RAIN project focused on developing high-performance, fault-tolerant, portable clustering technology for spaceborne computing . The technology that emerged from this project became the basis for a spinoff company, Rainfinity, which has the exclusive intellectual property rights to the RAIN technology. The authors describe the Raincore conceptual architecture and distributed services, which are designed to make it easy for developers to port their applications to run on top of a cluster of networking elements. We include two applications: a Web server prototype that was part of the original RAIN research project and a commercial firewall cluster product from Rainfinity

    The Raincore Distributed Session Service for Networking Elements

    Get PDF
    Motivated by the explosive growth of the Internet, we study efficient and fault-tolerant distributed session layer protocols for networking elements. These protocols are designed to enable a network cluster to share the state information necessary for balancing network traffic and computation load among a group of networking elements. In addition, in the presence of failures, they allow network traffic to fail-over from failed networking elements to healthy ones. To maximize the overall network throughput of the networking cluster, we assume a unicast communication medium for these protocols. The Raincore Distributed Session Service is based on a fault-tolerant token protocol, and provides group membership, reliable multicast and mutual exclusion services in a networking environment. We show that this service provides atomic reliable multicast with consistent ordering. We also show that Raincore token protocol consumes less overhead than a broadcast-based protocol in this environment in terms of CPU task-switching. The Raincore technology was transferred to Rainfinity, a startup company that is focusing on software for Internet reliability and performance. Rainwall, Rainfinity’s first product, was developed using the Raincore Distributed Session Service. We present initial performance results of the Rainwall product that validates our design assumptions and goals

    HT-Paxos: High Throughput State-Machine Replication Protocol for Large Clustered Data Centers

    Get PDF
    Paxos is a prominent theory of state machine replication. Recent data intensive Systems those implement state machine replication generally require high throughput. Earlier versions of Paxos as few of them are classical Paxos, fast Paxos and generalized Paxos have a major focus on fault tolerance and latency but lacking in terms of throughput and scalability. A major reason for this is the heavyweight leader. Through offloading the leader, we can further increase throughput of the system. Ring Paxos, Multi Ring Paxos and S-Paxos are few prominent attempts in this direction for clustered data centers. In this paper, we are proposing HT-Paxos, a variant of Paxos that one is the best suitable for any large clustered data center. HT-Paxos further offloads the leader very significantly and hence increases the throughput and scalability of the system. While at the same time, among high throughput state-machine replication protocols, HT-Paxos provides reasonably low latency and response time

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Unidirectional Quorum-based Cycle Planning for Efficient Resource Utilization and Fault-Tolerance

    Full text link
    In this paper, we propose a greedy cycle direction heuristic to improve the generalized R\mathbf{R} redundancy quorum cycle technique. When applied using only single cycles rather than the standard paired cycles, the generalized R\mathbf{R} redundancy technique has been shown to almost halve the necessary light-trail resources in the network. Our greedy heuristic improves this cycle-based routing technique's fault-tolerance and dependability. For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. Optimal communication quorum sets forming optical cycles based on light-trails have been shown to flexibly and efficiently route both point-to-point and multipoint-to-multipoint traffic requests. Commonly cycle routing techniques will use pairs of cycles to achieve both routing and fault-tolerance, which uses substantial resources and creates the potential for underutilization. Instead, we use a single cycle and intentionally utilize R\mathbf{R} redundancy within the quorum cycles such that every point-to-point communication pairs occur in at least R\mathbf{R} cycles. Without the paired cycles the direction of the quorum cycles becomes critical to the fault tolerance performance. For this we developed a greedy cycle direction heuristic and our single fault network simulations show a reduction of missing pairs by greater than 30%, which translates to significant improvements in fault coverage.Comment: Computer Communication and Networks (ICCCN), 2016 25th International Conference on. arXiv admin note: substantial text overlap with arXiv:1608.05172, arXiv:1608.05168, arXiv:1608.0517
    • …
    corecore