786 research outputs found

    Building Efficient and Compact Data Structures for Simplicial Complexes

    Get PDF
    The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the Simplex Tree while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree (MxST) and the Simplex Array List (SAL). We analyze the compressed Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.Comment: An extended abstract appeared in the proceedings of SoCG 201

    Building Efficient and Compact Data Structures for Simplicial Complexes

    Get PDF
    The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the Simplex Tree while retaining its functionalities. In addition, we propose two new data structures called Maximal Simplex Tree (MxST) and Simplex Array List (SAL). We analyze the compressed Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings

    An Efficient Representation for Filtrations of Simplicial Complexes

    Get PDF
    A filtration over a simplicial complex KK is an ordering of the simplices of KK such that all prefixes in the ordering are subcomplexes of KK. Filtrations are at the core of Persistent Homology, a major tool in Topological Data Analysis. In order to represent the filtration of a simplicial complex, the entire filtration can be appended to any data structure that explicitly stores all the simplices of the complex such as the Hasse diagram or the recently introduced Simplex Tree [Algorithmica '14]. However, with the popularity of various computational methods that need to handle simplicial complexes, and with the rapidly increasing size of the complexes, the task of finding a compact data structure that can still support efficient queries is of great interest. In this paper, we propose a new data structure called the Critical Simplex Diagram (CSD) which is a variant of the Simplex Array List (SAL) [Algorithmica '17]. Our data structure allows one to store in a compact way the filtration of a simplicial complex, and allows for the efficient implementation of a large range of basic operations. Moreover, we prove that our data structure is essentially optimal with respect to the requisite storage space. Finally, we show that the CSD representation admits fast construction algorithms for Flag complexes and relaxed Delaunay complexes.Comment: A preliminary version appeared in SODA 201

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd

    The Topology ToolKit

    Full text link
    This system paper presents the Topology ToolKit (TTK), a software platform designed for topological data analysis in scientific visualization. TTK provides a unified, generic, efficient, and robust implementation of key algorithms for the topological analysis of scalar data, including: critical points, integral lines, persistence diagrams, persistence curves, merge trees, contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots, Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due to a tight integration with ParaView. It is also easily accessible to developers through a variety of bindings (Python, VTK/C++) for fast prototyping or through direct, dependence-free, C++, to ease integration into pre-existing complex systems. While developing TTK, we faced several algorithmic and software engineering challenges, which we document in this paper. In particular, we present an algorithm for the construction of a discrete gradient that complies to the critical points extracted in the piecewise-linear setting. This algorithm guarantees a combinatorial consistency across the topological abstractions supported by TTK, and importantly, a unified implementation of topological data simplification for multi-scale exploration and analysis. We also present a cached triangulation data structure, that supports time efficient and generic traversals, which self-adjusts its memory usage on demand for input simplicial meshes and which implicitly emulates a triangulation for regular grids with no memory overhead. Finally, we describe an original software architecture, which guarantees memory efficient and direct accesses to TTK features, while still allowing for researchers powerful and easy bindings and extensions. TTK is open source (BSD license) and its code, online documentation and video tutorials are available on TTK's website

    Towards Persistence-Based Reconstruction in Euclidean Spaces

    Get PDF
    Manifold reconstruction has been extensively studied for the last decade or so, especially in two and three dimensions. Recently, significant improvements were made in higher dimensions, leading to new methods to reconstruct large classes of compact subsets of Euclidean space Rd\R^d. However, the complexities of these methods scale up exponentially with d, which makes them impractical in medium or high dimensions, even for handling low-dimensional submanifolds. In this paper, we introduce a novel approach that stands in-between classical reconstruction and topological estimation, and whose complexity scales up with the intrinsic dimension of the data. Specifically, when the data points are sufficiently densely sampled from a smooth mm-submanifold of Rd\R^d, our method retrieves the homology of the submanifold in time at most c(m)n5c(m)n^5, where nn is the size of the input and c(m)c(m) is a constant depending solely on mm. It can also provably well handle a wide range of compact subsets of Rd\R^d, though with worse complexities. Along the way to proving the correctness of our algorithm, we obtain new results on \v{C}ech, Rips, and witness complex filtrations in Euclidean spaces

    Simplicial Multivalued Maps and the Witness Complex for Dynamical Analysis of Time Series

    Full text link
    Topology based analysis of time-series data from dynamical systems is powerful: it potentially allows for computer-based proofs of the existence of various classes of regular and chaotic invariant sets for high-dimensional dynamics. Standard methods are based on a cubical discretization of the dynamics and use the time series to construct an outer approximation of the underlying dynamical system. The resulting multivalued map can be used to compute the Conley index of isolated invariant sets of cubes. In this paper we introduce a discretization that uses instead a simplicial complex constructed from a witness-landmark relationship. The goal is to obtain a natural discretization that is more tightly connected with the invariant density of the time series itself. The time-ordering of the data also directly leads to a map on this simplicial complex that we call the witness map. We obtain conditions under which this witness map gives an outer approximation of the dynamics, and thus can be used to compute the Conley index of isolated invariant sets. The method is illustrated by a simple example using data from the classical H\'enon map.Comment: laTeX, 9 figures, 32 page

    Optimal rates of convergence for persistence diagrams in Topological Data Analysis

    Full text link
    Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be naturally considered in general statistical frameworks and persistence diagrams can be used as statistics with interesting convergence properties. Some numerical experiments are performed in various contexts to illustrate our results
    corecore