173,652 research outputs found

    Communication as the Main Characteristic of Life

    Get PDF

    Learning, playing and interacting: good practice in the early years foundation stage

    Get PDF

    Origins of Mass

    Get PDF
    Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). The equations for massless particles support extra symmetries - specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles (WW and ZZ bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive (i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of WW and ZZ boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass mH≈125m_H \approx 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with mH≈125m_H \approx 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.Comment: Invited review for the Central European Journal of Physics. This is the supplement to my 2011 Solvay Conference talk promised there. It is adapted from an invited talk given at the Atlanta APS meeting, April 2012. 33 pages, 6 figures. v2: Added update section bringing in the CERN discovery announcemen

    The fractal urban coherence in biourbanism: the factual elements of urban fabric

    Get PDF
    This article is available online and will be inserted in also printed format in the Journal in October 2013.During the last few decades, modern urban fabric lost some very important elements, only because urban design and planning turned out to be stylistic aerial views or new landscapes of iconic technological landmarks. Biourbanism attempts to re-establish lost values and balance, not only in urban fabric, but also in reinforcing human-oriented design principles in either micro or macro scale. Biourbanism operates as a catalyst of theories and practices in both architecture and urban design to guarantee high standards in services, which are currently fundamental to the survival of communities worldwide. Human life in cities emerges during connectivity via geometrical continuity of grids and fractals, via path connectivity among highly active nodes, via exchange/movement of people and, finally via exchange of information (networks). In most human activities taking place in central areas of cities, people often feel excluded from design processes in the built environment. This paper aims at exploring the reasons for which, fractal cities, which have being conceived as symmetries and patterns, can have scientifically proven and beneficial impact on human fitness of body and mind; research has found that, brain traumas caused by visual agnosia become evident when patterns disappear from either 2D or 3D emergences in architectural and urban design.ADT Fund

    Self-organization in Communicating Groups: the emergence of coordination, shared references and collective intelligence\ud

    Get PDF
    The present paper will sketch the basic ideas of the complexity paradigm, and then apply them to social systems, and in particular to groups of communicating individuals who together need to agree about how to tackle some problem or how to coordinate their actions. I will elaborate these concepts to provide an integrated foundation for a theory of self-organization, to be understood as a non-linear process of spontaneous coordination between actions. Such coordination will be shown to consist of the following components: alignment, division of labor, workflow and aggregation. I will then review some paradigmatic simulations and experiments that illustrate the alignment of references and communicative conventions between communicating agents. Finally, the paper will summarize the preliminary results of a series of experiments that I devised in order to observe the emergence of collective intelligence within a communicating group, and interpret these observations in terms of alignment, division of labor and workflow

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Describing Common Human Visual Actions in Images

    Get PDF
    Which common human actions and interactions are recognizable in monocular still images? Which involve objects and/or other people? How many is a person performing at a time? We address these questions by exploring the actions and interactions that are detectable in the images of the MS COCO dataset. We make two main contributions. First, a list of 140 common `visual actions', obtained by analyzing the largest on-line verb lexicon currently available for English (VerbNet) and human sentences used to describe images in MS COCO. Second, a complete set of annotations for those `visual actions', composed of subject-object and associated verb, which we call COCO-a (a for `actions'). COCO-a is larger than existing action datasets in terms of number of actions and instances of these actions, and is unique because it is data-driven, rather than experimenter-biased. Other unique features are that it is exhaustive, and that all subjects and objects are localized. A statistical analysis of the accuracy of our annotations and of each action, interaction and subject-object combination is provided
    • 

    corecore