60,627 research outputs found

    Time Series on Functional Service Life of Buildings using Fuzzy Delphi Method

    Get PDF
    The functional service life of heritage buildings, defined as the time period during which the building fulfils the requirements for which it was designed, is a complex system that has still not been fully resolved and continues to be the object of research regarding its social, economic and cultural importance. This paper presents an application for analysing time series that reflect the state of building performance over time. To this end, historical time records are used that provided data that could be interpreted by experts in the field. The latter can then evaluate the input variables (vulnerability and risk) using the expert system for predicting the service life of buildings, Fuzzy Building Service Life (FBSL), this methodology put together the fuzzy logic tools and Delphi method. This model provides output data on the state of functionality or performance of each buildings at each moment in time whenever information records are available. The Delphi Method is used to eliminate expert subjectivity, establishing an FDM-type assessment methodology that effectively quantifies the service life of buildings over time. The application is able to provide significant data when generating future preventive maintenance programmes in architectural-cultural heritage buildings. It can also be used to optimise the resources invested in the conservation of heritage buildings. In order to validate this system, the FDM methodology is applied to some specific building examples.Ministerio de Economía y Competitividad de España, Project ART-RISK - BIA2015-64878-RMinisterio de Economía y Competitividad de España MTM 2015-65397-

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Attribute Identification and Predictive Customisation Using Fuzzy Clustering and Genetic Search for Industry 4.0 Environments

    Get PDF
    Today´s factory involves more services and customisation. A paradigm shift is towards “Industry 4.0” (i4) aiming at realising mass customisation at a mass production cost. However, there is a lack of tools for customer informatics. This paper addresses this issue and develops a predictive analytics framework integrating big data analysis and business informatics, using Computational Intelligence (CI). In particular, a fuzzy c-means is used for pattern recognition, as well as managing relevant big data for feeding potential customer needs and wants for improved productivity at the design stage for customised mass production. The selection of patterns from big data is performed using a genetic algorithm with fuzzy c-means, which helps with clustering and selection of optimal attributes. The case study shows that fuzzy c-means are able to assign new clusters with growing knowledge of customer needs and wants. The dataset has three types of entities: specification of various characteristics, assigned insurance risk rating, and normalised losses in use compared with other cars. The fuzzy c-means tool offers a number of features suitable for smart designs for an i4 environment

    Optimization of the supplier selection process in prefabrication using BIM

    Get PDF
    Prefabrication offers substantial benefits including reduction in construction waste, material waste, energy use, labor demands, and delivery time, and an improvement in project constructability and cost certainty. As the material cost accounts for nearly 70% of the total cost of the prefabrication project, to select a suitable material supplier plays an important role in such a project. The purpose of this study is to present a method for supporting supplier selection of a prefabrication project. The proposed method consists of three parts. First, a list of assessment criteria was established to evaluate the suitability of supplier alternatives. Second, Building Information Modelling (BIM) was adopted to provide sufficient information about the project requirements and suppliers’ profiles, which facilitates the storage and sharing of information. Finally, the Analytic Hierarchy Process (AHP) was used to rank the importance of the assessment criteria and obtain the score of supplier alternatives. The suppliers were ranked based on the total scores. To illustrate how to use the proposed method, it was applied to a real prefabrication project. The proposed method facilitates the supplier selection process by providing sufficient information in an effective way and by improving the understanding of the project requirements
    corecore