46 research outputs found

    Fault-Tolerant FPGA-Based Systems

    Get PDF
    This paper presents a new approach to on-line fault tolerance via reconfiguration for the systems mapped onto field programmable gate arrays (FPGAs). The fault detection, based on self-checking technique, is introduced at application level; therefore our approach can detect the faults of configurable logic blocks (CLBs) and routing interconnections in the FPGAs concurrently with the normal system work. A grid of tiles is projected on the FPGA structure and a certain number of spare CLBs is reserved inside every tile. The number of spare CLBs per tile, which will be used as a backup upon detecting any faulty CLB, is estimated in accordance with the probability of failure. After locating the faulty CLBs, the faulty tile will be reconfigured with avoiding the faulty CLBs. Our proposed approach uses a combination of hardware and software redundancy. We assume that a module external to the FPGA controls automatically the reconfiguration process in addition to the diagnosis process (DIRC); typically this is an embedded microprocessor having some storage for the various tile configurations. We have implemented our approach using Xilinx Virtex FPGA. The DIRC code is written in JBits software tools. In response to a component failure this approach capitalizes on the unique reconfiguration capabilities of FPGAs and replaces the affected tile with a functionally equivalent one that does not rely on the faulty component. Unlike fixed structure fault-tolerance techniques for ASICs and microprocessors, this approach allows a single physical component to provide redundant backup for several types of components

    Reconfiguration of field programmable logic in embedded systems

    Get PDF

    Using Relocatable Bitstreams for Fault Tolerance

    Get PDF
    This research develops a method for relocating reconfigurable modules on the Virtex-II (Pro) family of Field Programmable Gate Arrays (FPGAs). A bitstream translation program is developed which correctly changes the location of a partial bitstream that implements a module on the FPGA. To take advantage of relocatable modules, three fault-tolerance circuit designs are developed and tested. This circuit can operate through a fault by efficiently removing the faulty module and replacing it with a relocated module without faults. The FPGA can recover from faults at a known location, without the need for external intervention using an embedded fault recovery system. The recovery system uses an internal PowerPC to relocate the modules and reprogram the FPGA. Due to the limited architecture of the target FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be demonstrated. However, the various components needed to do this type of recovery have been implemented and demonstrated individually

    Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS

    Full text link
    Actualmente, las tecnologías CMOS submicrónicas son básicas para el desarrollo de los modernos sistemas basados en computadores, cuyo uso simplifica enormemente nuestra vida diaria en una gran variedad de entornos, como el gobierno, comercio y banca electrónicos, y el transporte terrestre y aeroespacial. La continua reducción del tamaño de los transistores ha permitido reducir su consumo y aumentar su frecuencia de funcionamiento, obteniendo por ello un mayor rendimiento global. Sin embargo, estas mismas características que mejoran el rendimiento del sistema, afectan negativamente a su confiabilidad. El uso de transistores de tamaño reducido, bajo consumo y alta velocidad, está incrementando la diversidad de fallos que pueden afectar al sistema y su probabilidad de aparición. Por lo tanto, existe un gran interés en desarrollar nuevas y eficientes técnicas para evaluar la confiabilidad, en presencia de fallos, de sistemas fabricados mediante tecnologías submicrónicas. Este problema puede abordarse por medio de la introducción deliberada de fallos en el sistema, técnica conocida como inyección de fallos. En este contexto, la inyección basada en modelos resulta muy interesante, ya que permite evaluar la confiabilidad del sistema en las primeras etapas de su ciclo de desarrollo, reduciendo por tanto el coste asociado a la corrección de errores. Sin embargo, el tiempo de simulación de modelos grandes y complejos imposibilita su aplicación en un gran número de ocasiones. Esta tesis se centra en el uso de dispositivos lógicos programables de tipo FPGA (Field-Programmable Gate Arrays) para acelerar los experimentos de inyección de fallos basados en simulación por medio de su implementación en hardware reconfigurable. Para ello, se extiende la investigación existente en inyección de fallos basada en FPGA en dos direcciones distintas: i) se realiza un estudio de las tecnologías submicrónicas existentes para obtener un conjunto representativo de modelos de fallos transitoriosAndrés Martínez, DD. (2007). Speeding-up model-based fault injection of deep-submicron CMOS fault models through dynamic and partially reconfigurable FPGAS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1943Palanci

    Design of an FPGA Logic Element for Implementing Asynchronous NULL Convention Logic Circuits

    Get PDF
    Two versions of a reconfigurable logic element are developed for use in constructing afield-programmable gate array NULL convention logic (NCL) field-programmable gate array (FPGA): one with extra embedded registration capability, which requires additional area, and one without. Both versions can be configured as any of the 27 fundamental NCL gates, including resettable and inverting variations, and both can utilize embedded registration for gates with three or fewer inputs; however, only the version with the additional embedded registration capability can utilize embedded registration with four-input gates. These two approaches are compared with each other and with an existing approach, showing that both versions developed herein yield a more area efficient NCL circuit implementation, compared to the previous work. The two FPGA logic elements are simulated at the transistor level using the 1.8-V, 180-nm TSMC CMOS process

    Hardware Fault Injection

    Get PDF
    Hardware fault injection is the widely accepted approach to evaluate the behavior of a circuit in the presence of faults. Thus, it plays a key role in the design of robust circuits. This chapter presents a comprehensive review of hardware fault injection techniques, including physical and logical approaches. The implementation of effective fault injection systems is also analyzed. Particular emphasis is made on the recently developed emulation-based techniques, which can provide large flexibility along with unprecedented levels of performance. These capabilities provide a way to tackle reliability evaluation of complex circuits.Publicad

    Placement and routing for reconfigurable systems.

    Get PDF
    Applications using reconfigurable logic have been widely demonstrated to offer better performance over software-based solutions. However, good performance rating is often destroyed by poor reconfiguration latency - time required to reconfigure hardware to perform the new task. Recent research focus on design automation techniques to address reconfiguration latency bottleneck. The contribution to novelty of this thesis is in new placement and routing techniques resulting in minimising reconfiguration latency of reconfigurable systems. This presents a part of design process concerned with positioning and connecting design blocks in a logic gate array. The aim of the research is to optimise the placement and interconnect strategy such that dynamic changes in system functionality can be achieved with minimum delay. A review of previous work in the field is given and the relevant theoretical framework developed. The dynamic reconfiguration problem is analysed for various reconfigurable technologies. Several algorithms are developed and evaluated using a representative set of problem domains to assess their effectiveness. Results obtained with novel placement and routing techniques demonstrate configuration data size reduction leading to significant reconfiguration latency improvements

    A Golden Age of Hardware Description Languages: Applying Programming Language Techniques to Improve Design Productivity

    Get PDF
    Leading experts have declared that there is an impending golden age of computer architecture. During this age, the rate at which architects will be able to innovate will be directly tied to the design and implementation of the hardware description languages they use. Thus, the programming languages community stands on the critical path to this new golden age. This implies that we are also on the cusp of a golden age of hardware description languages. In this paper, we discuss the intellectual challenges facing researchers interested in hardware description language design, compilers, and formal methods. The major theme will be identifying opportunities to apply programming language techniques to address issues in hardware design productivity. Then, we present a vision for a multi-language system that provides a framework for developing solutions to these intellectual problems. This vision is based on a meta-programmed host language combined with a core embedded hardware description language that is used as the basis for the research and development of a sea of domain-specific languages. Central to the design of this system is the core language which is based on an abstraction that provides a general mechanism for the composition of hardware components described in any language

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Asynchronous designs on FPGA with soft error tolerance for security algorithms

    Get PDF
    Asynchronous methodologies, such as Null Convention Logic (NCL), have tremendous potential in implementing digital logic. It is essential to design complex asynchronous circuits using commercial Electronic Design Automation (EDA) tools. The main focus of this thesis is to design NCL circuits using VHDL and implementing them on FPGAs. The major contributions of this thesis include: 1) Developing a methodology of designing NCL circuits with VHDL and applying it successfully to all practical designs in this thesis. 2) As an example, the NCL circuit for DES (Data Encryption Standard) algorithm has been designed and simulated using VHDL and the implementation issues on various FPGAs (Xilinx and Altera) have been investigated. Modification of the design has been done to minimize the amount of logic used. 3) An effective soft error tolerant scheme for asynchronous circuits on FPGAs is proposed, and successfully verified through software simulation and hardware implementation by introducing it into a DES round. This thesis provides a starting point for further investigation of NCL circuits, in terms of VHDL modeling, FPGA implementations, and soft error tolerance
    corecore