9,881 research outputs found

    Survey of tools for collaborative knowledge construction and sharing

    Get PDF
    The fast growth and spread of Web 2.0 environments have demonstrated the great willingness of general Web users to contribute and share various type of content and information. Many very successful web sites currently exist which thrive on the wisdom of the crowd, where web users in general are the sole data providers and curators. The Semantic Web calls for knowledge to be semantically represented using ontologies to allow for better access and sharing of data. However, constructing ontologies collaboratively is not well supported by most existing ontology and knowledge-base editing tools. This has resulted in the recent emergence of a new range of collaborative ontology construction tools with the aim of integrating some Web 2.0 features into the process of structured knowledge construction. This paper provides a survey of the start of the art of these tools, and highlights their significant features and capabilities

    Service-oriented Context-aware Framework

    Get PDF
    Location- and context-aware services are emerging technologies in mobile and desktop environments, however, most of them are difficult to use and do not seem to be beneficial enough. Our research focuses on designing and creating a service-oriented framework that helps location- and context-aware, client-service type application development and use. Location information is combined with other contexts such as the users' history, preferences and disabilities. The framework also handles the spatial model of the environment (e.g. map of a room or a building) as a context. The framework is built on a semantic backend where the ontologies are represented using the OWL description language. The use of ontologies enables the framework to run inference tasks and to easily adapt to new context types. The framework contains a compatibility layer for positioning devices, which hides the technical differences of positioning technologies and enables the combination of location data of various sources

    Coping with lists in the ifcOWL ontology

    Get PDF
    Over the past few years, several suggestions have been made of how to convert an EXPRESS schema into an OWL ontology. The conversion from EXPRESS to OWL is of particular use to architectural design and construction industry, because one of the key data models in architectural design and construction industry, namely the Industry Foundation Classes (IFC) is represented using the EXPRESS information modelling language. In each of these conversion options, the way in which lists are converted (e.g. lists of coordinates, lists of spaces in a floor) is key to the structure and eventual strength of the resulting ontology. In this article, we outline and discuss the main decisions that can be made in converting LIST concepts in EXPRESS to equivalent OWL expressions. This allows one to identify which conversion option is appropriate to support proper and efficient information reuse in the domain of architecture and construction

    A community based approach for managing ontology alignments

    Get PDF
    The Semantic Web is rapidly becoming a defacto distributed repository for semantically represented data, thus leveraging on the added on value of the network effect. Various ontology mapping techniques and tools have been devised to facilitate the bridging and integration of distributed data repositories. Nevertheless, ontology mapping can benefitfrom human supervision to increase accuracy of results. The spread of Web 2.0 approaches demonstrate the possibility of using collaborative techniques for reaching consensus. While a number of prototypes for collaborative ontology construction are being developed, collaborative ontology mapping is not yet well investigated. In this paper, we describe a prototype that combines off-the-shelf ontology mapping tools with social software techniques to enable users to collaborate on mapping ontologies

    Proceedings ICPW'07: 2nd International Conference on the Pragmatic Web, 22-23 Oct. 2007, Tilburg: NL

    Get PDF
    Proceedings ICPW'07: 2nd International Conference on the Pragmatic Web, 22-23 Oct. 2007, Tilburg: N

    Drawing OWL 2 ontologies with Eddy the editor

    Get PDF
    In this paper we introduce Eddy, a new open-source tool for the graphical editing of OWL~2 ontologies. Eddy is specifically designed for creating ontologies in Graphol, a completely visual ontology language that is equivalent to OWL~2. Thus, in Eddy ontologies are easily drawn as diagrams, rather than written as sets of formulas, as commonly happens in popular ontology design and engineering environments. This makes Eddy particularly suited for usage by people who are more familiar with diagramatic languages for conceptual modeling rather than with typical ontology formalisms, as is often required in non-academic and industrial contexts. Eddy provides intuitive functionalities for specifying Graphol diagrams, guarantees their syntactic correctness, and allows for exporting them in standard OWL 2 syntax. A user evaluation study we conducted shows that Eddy is perceived as an easy and intuitive tool for ontology specification

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector

    Robot Navigation in Unseen Spaces using an Abstract Map

    Full text link
    Human navigation in built environments depends on symbolic spatial information which has unrealised potential to enhance robot navigation capabilities. Information sources such as labels, signs, maps, planners, spoken directions, and navigational gestures communicate a wealth of spatial information to the navigators of built environments; a wealth of information that robots typically ignore. We present a robot navigation system that uses the same symbolic spatial information employed by humans to purposefully navigate in unseen built environments with a level of performance comparable to humans. The navigation system uses a novel data structure called the abstract map to imagine malleable spatial models for unseen spaces from spatial symbols. Sensorimotor perceptions from a robot are then employed to provide purposeful navigation to symbolic goal locations in the unseen environment. We show how a dynamic system can be used to create malleable spatial models for the abstract map, and provide an open source implementation to encourage future work in the area of symbolic navigation. Symbolic navigation performance of humans and a robot is evaluated in a real-world built environment. The paper concludes with a qualitative analysis of human navigation strategies, providing further insights into how the symbolic navigation capabilities of robots in unseen built environments can be improved in the future.Comment: 15 pages, published in IEEE Transactions on Cognitive and Developmental Systems (http://doi.org/10.1109/TCDS.2020.2993855), see https://btalb.github.io/abstract_map/ for access to softwar

    Application of Semantics to Solve Problems in Life Sciences

    Get PDF
    Fecha de lectura de Tesis: 10 de diciembre de 2018La cantidad de información que se genera en la Web se ha incrementado en los últimos años. La mayor parte de esta información se encuentra accesible en texto, siendo el ser humano el principal usuario de la Web. Sin embargo, a pesar de todos los avances producidos en el área del procesamiento del lenguaje natural, los ordenadores tienen problemas para procesar esta información textual. En este cotexto, existen dominios de aplicación en los que se están publicando grandes cantidades de información disponible como datos estructurados como en el área de las Ciencias de la Vida. El análisis de estos datos es de vital importancia no sólo para el avance de la ciencia, sino para producir avances en el ámbito de la salud. Sin embargo, estos datos están localizados en diferentes repositorios y almacenados en diferentes formatos que hacen difícil su integración. En este contexto, el paradigma de los Datos Vinculados como una tecnología que incluye la aplicación de algunos estándares propuestos por la comunidad W3C tales como HTTP URIs, los estándares RDF y OWL. Haciendo uso de esta tecnología, se ha desarrollado esta tesis doctoral basada en cubrir los siguientes objetivos principales: 1) promover el uso de los datos vinculados por parte de la comunidad de usuarios del ámbito de las Ciencias de la Vida 2) facilitar el diseño de consultas SPARQL mediante el descubrimiento del modelo subyacente en los repositorios RDF 3) crear un entorno colaborativo que facilite el consumo de Datos Vinculados por usuarios finales, 4) desarrollar un algoritmo que, de forma automática, permita descubrir el modelo semántico en OWL de un repositorio RDF, 5) desarrollar una representación en OWL de ICD-10-CM llamada Dione que ofrezca una metodología automática para la clasificación de enfermedades de pacientes y su posterior validación haciendo uso de un razonador OWL
    corecore