1,219,349 research outputs found

    Partnerships for technology transfer: how can investors and communities build renewable energy in Asia?

    Get PDF
    Technology transfer for climate change mitigation needs to focus on the diffusion of existing technologies as well as the innovation of technologies. • Diffusion requires full involvement of non-state actors, particularly business investors in new and renewable energy technologies and the local communities who adopt technologies. • This paper presents advice about how partnerships between investors and communities can accelerate technology transfer by reducing investors’ costs and making technologies more relevant to local development. Partnerships are based on a combination of creating assurance mechanisms, reducing transaction costs, and building trust and accountability. • Capacity-building and enabling environments for technology transfer therefore have to include building these partnerships between investors and host communities

    Supporting decision-making in the building life-cycle using linked building data

    Get PDF
    The interoperability challenge is a long-standing challenge in the domain of architecture, engineering and construction (AEC). Diverse approaches have already been presented for addressing this challenge. This article will look into the possibility of addressing the interoperability challenge in the building life-cycle with a linked data approach. An outline is given of how linked data technologies tend to be deployed, thereby working towards a “more holistic” perspective on the building, or towards a large-scale web of “linked building data”. From this overview, and the associated use case scenarios, we conclude that the interoperability challenge cannot be “solved” using linked data technologies, but that it can be addressed. In other words, information exchange and management can be improved, but a pragmatic usage of technologies is still required in practice. Finally, we give an initial outline of some anticipated use cases in the building life-cycle in which the usage of linked data technologies may generate advantages over existing technologies and methods

    The Diffusion of Energy Efficiency in Building

    Get PDF
    We analyze the diffusion of buildings certified for energy efficiency across US property markets. Using a panel of 48 metropolitan areas (MSAs) observed over the last 15 years, we model the geographic patterns and dynamics of building certification, relating industry composition, changes in economic conditions, characteristics of the local commercial property market, and the presence of human capital, to the cross-sectional variation in energy-efficient building technologies and the diffusion of those technologies over time. Understanding the determinants and the rate at which energy-efficient building practices diffuse is important for designing policies to affect resource consumption in the built environment.

    The role of DSM + C to facilitate the integration of renewable energy and low carbon energy technologies

    Get PDF
    Recent legislation and building regulations have aiming to reduce the energy demands of buildings and include renewable based micro-generation technologies. Due to the variations in energy delivery from these technologies, optimised control over building plant and loads is essential if we are to achieve a good demand-supply match and achieve a reduction in energy demands. This paper reports on research being undertaken as part of the UK EPSRC SuperGen Future Networks programme, specifically relating to the development of algorithms for simulating dynamic demand side control strategies to identify demand-supply matching options when deploying building integrated renewable energy and low carbon technologies. The development of demand side management and control (DSM+c) is a means to improve the dynamic demand-supply match taking account of the available demand side management capacity and time of occurrence. The principle of the developed DSM+c algorithms is to maximise the available control capacity which will enable a better demand-supply match while minimising any impact on users. This paper will demonstrate the application of DSM+c to improve the energy efficiency of a building (e.g. reduced total capacity), restructure the demand pattern via load shifting and switching (e.g. on/off or proportional control) to one more favourable to building integrated renewables. The impact of different control strategies on demand profile restructuring will be demonstrated using simulation to alter the settings of the DSM+c parameters - such as priority, methods and periods - for a given demand profile. The paper will conclude by presenting the outcomes from a case study using the decision support/design tool, MERIT where the developed DSM+c algorithms have been implemented to better facilitate the match between demand and building integrated clean energy supply technologies at the individual multi-familiy building level

    Collaboration Enabling Internet Resource Collection-Building Software and Technologies

    Get PDF
    Over the last decade the Library of the University of California, Riverside and its collaborators have developed a number of systems, service designs, and projects that utilize innovative technologies to foster better Internet finding tools in libraries and more cooperative and efficient effort in Internet link and metadata collection building. The open-source software and projects discussed represent appropriate technologies and sustainable strategies that we believe will help Internet portals, digital libraries, virtual libraries, library catalogs-with-portal-like-capabilities (IPDVLCs), and related collection-building efforts in academia to better scale and more accurately anticipate and meet the needs of scholarly and educational users.published or submitted for publicatio

    The role of built environment energy efficiency in a sustainable UK energy economy

    Get PDF
    Energy efficiency in the built environment can make significant contributions to a sustainable energy economy. In order to achieve this, greater public awareness of the importance of energy efficiency is required. In the short term, new efficient domestic appliances, building technologies, legislation quantifying building plant performance, and improved building regulations to include installed plant will be required. Continuing these improvements in the longer term is likely to see the adoption of small-scale renewable technologies embedded in the building fabric. Internet-based energy services will see low-cost building energy management and control delivered to the mass market in order that plant can be operated and maintained at optimum performance levels and energy savings quantified. There are many technology options for improved energy performance of the building fabric and energy systems and it's not yet clear which will prove to be the most economic. Therefore, flexibility is needed in legislation and energy-efficiency initiatives

    Overview of technologies for building robots in the classroom

    Get PDF
    This paper aims to give an overview of technologies that can be used to implement robotics within an educational context. We discuss complete robotics systems as well as projects that implement only certain elements of a robotics system, such as electronics, hardware, or software. We believe that Maker Movement and DIY trends offers many new opportunities for teaching and feel that they will become much more prominent in the future. Products and projects discussed in this paper are: Mindstorms, Vex, Arduino, Dwengo, Raspberry Pi, MakeBlock, OpenBeam, BitBeam, Scratch, Blockly and ArduBlock

    Assessing the time-sensitive impacts of energy efficiency and flexibility in the US building sector

    Get PDF
    The building sector consumes 75% of US electricity, offering substantial energy, cost, and CO2 emissions savings potential. New technologies enable buildings to flexibly manage electric loads across different times of day and season in support of a low-cost, low-carbon electric grid. Assessing the value of such technologies requires an understanding of building electric load variability at a higher temporal resolution than is demonstrated in previous studies of US building efficiency potential. We adapt Scout, an open-access model of US building energy use, to characterize sub-annual variations in baseline building electricity use, costs, and emissions at the national scale. We apply this baseline in time-sensitive analyses of the energy, cost, and CO2 emissions savings potential of various degrees of energy efficiency and flexibility, finding that efficiency continues to have strong value in a time-sensitive assessment framework while the value of flexibility depends on assumed electricity rates, measure magnitude and duration, and the amount of savings already captured by efficiency

    Integration of environmental data in BIM tool & linked building data

    Get PDF
    Environmental assessment is a critical need to ensure building sustainability. In order to enhance the sustainability of building, involved actors should be able to access and share not only information about the building but also data about products and especially their environmental assessment. Among several approaches that have been proposed to achieve that, semantic web technologies stand out from the crowd by their capabilities to share data and enhance interoperability in between the most heterogeneous systems. This paper presents the implementation of a method in which semantic web technologies and particularly Linked Data have been combined with Building Information Modelling (BIM) tools to foster building sustainability by introducing products with their environmental assessment in building data during the modelling phase. Based on Linked Building Data (LBD) vocabularies and environmental data, several ontologies have been generated in order to make both of them available as Resource Description Framework (RDF) graphs. A database access plugin has been developed and installed in a BIM tool. In that way, the LBD generated from the BIM tool contains, for each product a reference to its environmental assessment which is contained in a triplestore

    Semantic query languages for knowledge-based web services in a construction context

    Get PDF
    Since the early 2000s, different frameworks were set up to enable web-based collaboration in building projects. Unfortunately, none of these initiatives was granted a long life. Recently, however, the use of web technologies in the building industry has been gaining momentum again, considered some promising technologies for reaching a more interoperable BIM practice. Specifically, this relates to (1) Linked Data and Semantic Web technologies, and (2) cloud-based applications. In order to combine these into a network of interlinked applications and datastores, an agreed-upon mechanism for automatic communication and data retrieval needs to be used. Apart from the W3C standard SPARQL, often considered too high a threshold for developers to implement, there are some recent GraphQL-based solutions that simplify the querying process and its implementation into web services. In this paper, we review two recent open source technologies based on GraphQL, that enable to query Linked Data on the web: GraphQL-LD and HyperGraphQL
    corecore