668,347 research outputs found

    Estimation error for blind Gaussian time series prediction

    Get PDF
    We tackle the issue of the blind prediction of a Gaussian time series. For this, we construct a projection operator build by plugging an empirical covariance estimation into a Schur complement decomposition of the projector. This operator is then used to compute the predictor. Rates of convergence of the estimates are given

    Extracting Build Changes with BUILDDIFF

    Full text link
    Build systems are an essential part of modern software engineering projects. As software projects change continuously, it is crucial to understand how the build system changes because neglecting its maintenance can lead to expensive build breakage. Recent studies have investigated the (co-)evolution of build configurations and reasons for build breakage, but they did this only on a coarse grained level. In this paper, we present BUILDDIFF, an approach to extract detailed build changes from MAVEN build files and classify them into 95 change types. In a manual evaluation of 400 build changing commits, we show that BUILDDIFF can extract and classify build changes with an average precision and recall of 0.96 and 0.98, respectively. We then present two studies using the build changes extracted from 30 open source Java projects to study the frequency and time of build changes. The results show that the top 10 most frequent change types account for 73% of the build changes. Among them, changes to version numbers and changes to dependencies of the projects occur most frequently. Furthermore, our results show that build changes occur frequently around releases. With these results, we provide the basis for further research, such as for analyzing the (co-)evolution of build files with other artifacts or improving effort estimation approaches. Furthermore, our detailed change information enables improvements of refactoring approaches for build configurations and improvements of models to identify error-prone build files.Comment: Accepted at the International Conference of Mining Software Repositories (MSR), 201

    KAPow: A System Identification Approach to Online Per-Module Power Estimation in FPGA Designs

    Get PDF
    In a modern FPGA system-on-chip design, it is often insufficient to simply assess the total power consumption of the entire circuit by design-time estimation or runtime power rail measurement. Instead, to make better runtime decisions, it is desirable to understand the power consumed by each individual module in the system. In this work, we combine boardlevel power measurements with register-level activity counting to build an online model that produces a breakdown of power consumption within the design. Online model refinement avoids the need for a time-consuming characterisation stage and also allows the model to track long-term changes to operating conditions. Our flow is named KAPow, a (loose) acronym for ‘K’ounting Activity for Power estimation, which we show to be accurate, with per-module power estimates as close to ±5mW of true measurements, and to have low overheads. We also demonstrate an application example in which a permodule power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide power consumption by over 8%
    • …