1,417 research outputs found

    Cause Clue Clauses: Error Localization using Maximum Satisfiability

    Full text link
    Much effort is spent everyday by programmers in trying to reduce long, failing execution traces to the cause of the error. We present a new algorithm for error cause localization based on a reduction to the maximal satisfiability problem (MAX-SAT), which asks what is the maximum number of clauses of a Boolean formula that can be simultaneously satisfied by an assignment. At an intuitive level, our algorithm takes as input a program and a failing test, and comprises the following three steps. First, using symbolic execution, we encode a trace of a program as a Boolean trace formula which is satisfiable iff the trace is feasible. Second, for a failing program execution (e.g., one that violates an assertion or a post-condition), we construct an unsatisfiable formula by taking the trace formula and additionally asserting that the input is the failing test and that the assertion condition does hold at the end. Third, using MAX-SAT, we find a maximal set of clauses in this formula that can be satisfied together, and output the complement set as a potential cause of the error. We have implemented our algorithm in a tool called bug-assist for C programs. We demonstrate the surprising effectiveness of the tool on a set of benchmark examples with injected faults, and show that in most cases, bug-assist can quickly and precisely isolate the exact few lines of code whose change eliminates the error. We also demonstrate how our algorithm can be modified to automatically suggest fixes for common classes of errors such as off-by-one.Comment: The pre-alpha version of the tool can be downloaded from http://bugassist.mpi-sws.or

    Spectrum-Based Fault Localization in Model Transformations

    Get PDF
    Model transformations play a cornerstone role in Model-Driven Engineering (MDE), as they provide the essential mechanisms for manipulating and transforming models. The correctness of software built using MDE techniques greatly relies on the correctness of model transformations. However, it is challenging and error prone to debug them, and the situation gets more critical as the size and complexity of model transformations grow, where manual debugging is no longer possible. Spectrum-Based Fault Localization (SBFL) uses the results of test cases and their corresponding code coverage information to estimate the likelihood of each program component (e.g., statements) of being faulty. In this article we present an approach to apply SBFL for locating the faulty rules in model transformations. We evaluate the feasibility and accuracy of the approach by comparing the effectiveness of 18 different stateof- the-art SBFL techniques at locating faults in model transformations. Evaluation results revealed that the best techniques, namely Kulcynski2, Mountford, Ochiai, and Zoltar, lead the debugger to inspect a maximum of three rules to locate the bug in around 74% of the cases. Furthermore, we compare our approach with a static approach for fault localization in model transformations, observing a clear superiority of the proposed SBFL-based method.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIN2015-70560-RJunta de AndalucĂ­a P12-TIC-186

    CONTEXT-AWARE DEBUGGING FOR CONCURRENT PROGRAMS

    Get PDF
    Concurrency faults are difficult to reproduce and localize because they usually occur under specific inputs and thread interleavings. Most existing fault localization techniques focus on sequential programs but fail to identify faulty memory access patterns across threads, which are usually the root causes of concurrency faults. Moreover, existing techniques for sequential programs cannot be adapted to identify faulty paths in concurrent programs. While concurrency fault localization techniques have been proposed to analyze passing and failing executions obtained from running a set of test cases to identify faulty access patterns, they primarily focus on using statistical analysis. We present a novel approach to fault localization using feature selection techniques from machine learning. Our insight is that the concurrency access patterns obtained from a large volume of coverage data generally constitute high dimensional data sets, yet existing statistical analysis techniques for fault localization are usually applied to low dimensional data sets. Each additional failing or passing run can provide more diverse information, which can help localize faulty concurrency access patterns in code. The patterns with maximum feature diversity information can point to the most suspicious pattern. We then apply data mining technique and identify the interleaving patterns that are occurred most frequently and provide the possible faulty paths. We also evaluate the effectiveness of fault localization using test suites generated from different test adequacy criteria. We have evaluated Cadeco on 10 real-world multi-threaded Java applications. Results indicate that Cadeco outperforms state-of-the-art approaches for localizing concurrency faults

    Utilizing traceable software artifacts to improve bug localization

    Get PDF
    Die Entwicklung von Softwaresystemen ist eine komplexe Aufgabe. Qualitätssicherung versucht auftretenden Softwarefehler (bugs) in Systemen zu vermeiden, jedoch können Fehler nie ausgeschlossen werden. Sobald ein Softwarefehler entdeckt wird, wird typischerweise ein Fehlerbericht (bug report) erstellt. Dieser dient als Ausgangspunkt für den Entwickler den Fehler im Quellcode der Software zu finden und zu beheben (bug fixing). Fehlerberichte sowie weitere Softwareartefakte, z.B. Anforderungen und der Quellcode selbst, werden in Software Repositories abgelegt. Diese erlauben die Artefakte mit trace links zur Nachvollziehbarkeit (traceability) zu verknüpfen. Oftmals ist die Erstellung der trace links im Entwicklungsprozess vorgeschrieben. Dazu zählen u.a. die Luftfahrt- und Automobilindustrie, sowie die Entwicklung von medizinischen Geräten. Das Auffinden von Softwarefehlern in großen Systemen mit tausenden Artefakten ist eine anspruchsvolle, zeitintensive und fehleranfällige Aufgabe, welche eine umfangreiche Projektkenntnis erfordert. Deswegen wird seit Jahren aktiv an der Automatisierung dieses Prozesses geforscht. Weiterhin wird die manuelle Erstellung und Pflege von trace links als Belastung empfunden und sollte weitgehend automatisiert werden. In dieser Arbeit wird ein neuartiger Algorithmus zum Auffinden von Softwarefehlern vorgestellt, der aktiv die erstellten trace links ausnutzt. Die Artefakte und deren Beziehungen dienen zur Erstellung eines Nachvollziehbarkeitsgraphen, welcher analysiert wird um fehlerhafte Quellcodedateien anhand eines Fehlerberichtes zu finden. Jedoch muss angenommen werden, dass nicht alle notwendigen trace links zwischen den Softwareartefakten eines Projektes erstellt wurden. Deswegen wird ein vollautomatisierter, projektunabhängiger Ansatz vorgestellt, der diese fehlenden trace links erstellt (augmentation). Die Grundlage zur Entwicklung dieses Algorithmus ist der typische Entwicklungsprozess eines Softwareprojektes. Die entwickelten Ansätze wurden mit mehr als 32.000 Fehlerberichten von 27 Open-Source Projekten evaluiert und die Ergebnisse zeigen, dass die Einbeziehung von traceability signifikant das Auffinden von Fehlern im Quellcode verbessert. Weiterhin kann der entwickelte Augmentation Algorithmus zuverlässig fehlende trace links erstellen.The development of software systems is a very complex task. Quality assurance tries to prevent defects – software bugs – in deployed systems, but it is impossible to avoid bugs all together, especially during development. Once a bug is observed, typically a bug report is written. It guides the responsible developer to locate the bug in the project's source code, and once found to fix it. The bug reports, along with other development artifacts such as requirements and the source code are stored in software repositories. The repositories also allow to create relationships – trace links – among contained artifacts. Establishing this traceability is demanded in many domains, such as safety related ones like the automotive and aviation industry, or in development of medical devices. However, in large software systems with thousands of artifacts, especially source code files, manually locating a bug is time consuming, error-prone, and requires extensive knowledge of the project. Thus, automating the bug localization process is actively researched since many years. Further, manually creating and maintaining trace links is often considered as a burden, and there is the need to automate this task as well. Multiple studies have shown, that traceability is beneficial for many software development tasks. This thesis presents a novel bug localization algorithm utilizing traceability. The project's artifacts and trace links are used to create a traceability graph. This graph is then analyzed to locate defective source code files for a given bug report. Since the existing trace link set of a project is possibly incomplete, another algorithm is prosed to augment missing links. The algorithm is fully automated, project independent, and derived from a project's development workflow. An evaluation on more than 32,000 bug reports from 27 open-source projects shows, that incorporating traceability information into bug localization significantly improves the bug localization performance compared to two state of the art algorithms. Further, the trace link augmentation approach reliably constructs missing links and therefore simplifies the required trace maintenance
    • …
    corecore