15 research outputs found

    Automatic bug triaging techniques using machine learning and stack traces

    Get PDF
    When a software system crashes, users have the option to report the crash using automated bug tracking systems. These tools capture software crash and failure data (e.g., stack traces, memory dumps, etc.) from end-users. These data are sent in the form of bug (crash) reports to the software development teams to uncover the causes of the crash and provide adequate fixes. The reports are first assessed (usually in a semi-automatic way) by a group of software analysts, known as triagers. Triagers assign priority to the bugs and redirect them to the software development teams in order to provide fixes. The triaging process, however, is usually very challenging. The problem is that many of these reports are caused by similar faults. Studies have shown that one way to improve the bug triaging process is to detect automatically duplicate (or similar) reports. This way, triagers would not need to spend time on reports caused by faults that have already been handled. Another issue is related to the prioritization of bug reports. Triagers often rely on the information provided by the customers (the report submitters) to prioritize bug reports. However, this task can be quite tedious and requires tool support. Next, triagers route the bug report to the responsible development team based on the subsystem, which caused the crash. Since having knowledge of all the subsystems of an ever-evolving industrial system is impractical, having a tool to automatically identify defective subsystems can significantly reduce the manual bug triaging effort. The main goal of this research is to investigate techniques and tools to help triagers process bug reports. We start by studying the effect of the presence of stack traces in analyzing bug reports. Next, we present a framework to help triagers in each step of the bug triaging process. We propose a new and scalable method to automatically detect duplicate bug reports using stack traces and bug report categorical features. We then propose a novel approach for predicting bug severity using stack traces and categorical features, and finally, we discuss a new method for predicting faulty product and component fields of bug reports. We evaluate the effectiveness of our techniques using bug reports from two large open-source systems. Our results show that stack traces and machine learning methods can be used to automate the bug triaging process, and hence increase the productivity of bug triagers, while reducing costs and efforts associated with manual triaging of bug reports

    Towards Effective Bug Triage with Software Data Reduction Techniques

    Get PDF
    International audienceSoftware companies spend over 45 percent of cost in dealing with software bugs. An inevitable step of fixing bugs is bug triage, which aims to correctly assign a developer to a new bug. To decrease the time cost in manual work, text classification techniques are applied to conduct automatic bug triage. In this paper, we address the problem of data reduction for bug triage, i.e., how to reduce the scale and improve the quality of bug data. We combine instance selection with feature selection to simultaneously reduce data scale on the bug dimension and the word dimension. To determine the order of applying instance selection and feature selection, we extract attributes from historical bug data sets and build a predictive model for a new bug data set. We empirically investigate the performance of data reduction on totally 600,000 bug reports of two large open source projects, namely Eclipse and Mozilla. The results show that our data reduction can effectively reduce the data scale and improve the accuracy of bug triage. Our work provides an approach to leveraging techniques on data processing to form reduced and high-quality bug data in software development and maintenance

    From Bugs to Decision Support – Leveraging Historical Issue Reports in Software Evolution

    Get PDF
    Software developers in large projects work in complex information landscapes and staying on top of all relevant software artifacts is an acknowledged challenge. As software systems often evolve over many years, a large number of issue reports is typically managed during the lifetime of a system, representing the units of work needed for its improvement, e.g., defects to fix, requested features, or missing documentation. Efficient management of incoming issue reports requires the successful navigation of the information landscape of a project. In this thesis, we address two tasks involved in issue management: Issue Assignment (IA) and Change Impact Analysis (CIA). IA is the early task of allocating an issue report to a development team, and CIA is the subsequent activity of identifying how source code changes affect the existing software artifacts. While IA is fundamental in all large software projects, CIA is particularly important to safety-critical development. Our solution approach, grounded on surveys of industry practice as well as scientific literature, is to support navigation by combining information retrieval and machine learning into Recommendation Systems for Software Engineering (RSSE). While the sheer number of incoming issue reports might challenge the overview of a human developer, our techniques instead benefit from the availability of ever-growing training data. We leverage the volume of issue reports to develop accurate decision support for software evolution. We evaluate our proposals both by deploying an RSSE in two development teams, and by simulation scenarios, i.e., we assess the correctness of the RSSEs' output when replaying the historical inflow of issue reports. In total, more than 60,000 historical issue reports are involved in our studies, originating from the evolution of five proprietary systems for two companies. Our results show that RSSEs for both IA and CIA can help developers navigate large software projects, in terms of locating development teams and software artifacts. Finally, we discuss how to support the transfer of our results to industry, focusing on addressing the context dependency of our tool support by systematically tuning parameters to a specific operational setting

    Recommending Analogical APIs via Knowledge Graph Embedding

    Full text link
    Library migration, which re-implements the same software behavior by using a different library instead of using the current one, has been widely observed in software evolution. One essential part of library migration is to find an analogical API that could provide the same functionality as current ones. However, given the large number of libraries/APIs, manually finding an analogical API could be very time-consuming and error-prone. Researchers have developed multiple automated analogical API recommendation techniques. Documentation-based methods have particularly attracted significant interest. Despite their potential, these methods have limitations, such as a lack of comprehensive semantic understanding in documentation and scalability challenges. In this work, we propose KGE4AR, a novel documentation-based approach that leverages knowledge graph (KG) embedding to recommend analogical APIs during library migration. Specifically, KGE4AR proposes a novel unified API KG to comprehensively and structurally represent three types of knowledge in documentation, which can better capture the high-level semantics. Moreover, KGE4AR then proposes to embed the unified API KG into vectors, enabling more effective and scalable similarity calculation. We build KGE4AR' s unified API KG for 35,773 Java libraries and assess it in two API recommendation scenarios: with and without target libraries. Our results show that KGE4AR substantially outperforms state-of-the-art documentation-based techniques in both evaluation scenarios in terms of all metrics (e.g., 47.1%-143.0% and 11.7%-80.6% MRR improvements in each scenario). Additionally, we explore KGE4AR' s scalability, confirming its effective scaling with the growing number of libraries.Comment: Accepted by FSE 202
    corecore