397 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    DTMsim - DTM channel simulation in ns

    Get PDF
    Dynamic Transfer Mode (DTM) is a ring based MAN technology that provides a channel abstraction with a dynamically adjustable capacity. TCP is a reliable end to end transport protocol capable of adjusting its rate. The primary goal of this work is investigate the coupling of dynamically allocating bandwidth to TCP flows with the affect this has on the congestion control mechanism of TCP. In particular we wanted to find scenerios where this scheme does not work, where either all the link capacity is allocated to TCP or congestion collapse occurs and no capacity is allocated to TCP. We have created a simulation environment using ns-2 to investigate TCP over networks which have a variable capacity link. We begin with a single TCP Tahoe flow over a fixed bandwidth link and progressively add more complexity to understand the behaviour of dynamically adjusting link capacity to TCP and vice versa

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Dynamic bandwidth allocation in ATM networks

    Get PDF
    Includes bibliographical references.This thesis investigates bandwidth allocation methodologies to transport new emerging bursty traffic types in ATM networks. However, existing ATM traffic management solutions are not readily able to handle the inevitable problem of congestion as result of the bursty traffic from the new emerging services. This research basically addresses bandwidth allocation issues for bursty traffic by proposing and exploring the concept of dynamic bandwidth allocation and comparing it to the traditional static bandwidth allocation schemes

    Supporting real time video over ATM networks

    Get PDF
    Includes bibliographical references.In this project, we propose and evaluate an approach to delimit and tag such independent video slice at the ATM layer for early discard. This involves the use of a tag cell differentiated from the rest of the data by its PTI value and a modified tag switch to facilitate the selective discarding of affected cells within each video slice as opposed to dropping of cells at random from multiple video frames

    TCP/IP traffic over ATM network with ABR flow and congestion control

    Get PDF
    Most traffics over the existing ATM network are generated by applications running over TCP/IP protocol stack. In the near future, the success of ATM technology will depend largely on how well it supports the huge legacy of existing TCP/IP applications. In this thesis, we study and compare the performance of TCP/IP traffic running on different rate based ABR flow control algorithms such as EFCI, ERICA and FMMRA by extensive simulations. Infinite source-end traffic behavior is chosen to represent, FTP application running on TCP/IP. Background VBR traffic with different ON-OFF frequency is introduced to produce transient network states as well as congestion. The simulations produce many insights on issues such as: ABR queue length in congested ATM switch, source-end ACR (Allowed Cell Rate), link utilization at congestion point, efficient end to end TCP throughput, the TCP congestion control window size, and the TCP round trip time. Based on the simulation results, zero cell loss switch buffer requirement of the three algorithms are compared, and the fairness of ABR bandwidth allocation among TCP connections are analyzed. The interaction between the TCP layer and the ATM layer flow and congestion control mechanism is analyzed. Our simulation results show that in order to get a good TCP throughput and affordable switch buffer requirement, some kind of switch queue length monitoring and control mechanism is necessary in the ABR. congestion algorithm

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl
    corecore