3,198 research outputs found

    Asymptotic optimality of maximum pressure policies in stochastic processing networks

    Full text link
    We consider a class of stochastic processing networks. Assume that the networks satisfy a complete resource pooling condition. We prove that each maximum pressure policy asymptotically minimizes the workload process in a stochastic processing network in heavy traffic. We also show that, under each quadratic holding cost structure, there is a maximum pressure policy that asymptotically minimizes the holding cost. A key to the optimality proofs is to prove a state space collapse result and a heavy traffic limit theorem for the network processes under a maximum pressure policy. We extend a framework of Bramson [Queueing Systems Theory Appl. 30 (1998) 89--148] and Williams [Queueing Systems Theory Appl. 30 (1998b) 5--25] from the multiclass queueing network setting to the stochastic processing network setting to prove the state space collapse result and the heavy traffic limit theorem. The extension can be adapted to other studies of stochastic processing networks.Comment: Published in at http://dx.doi.org/10.1214/08-AAP522 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stable Wireless Network Control Under Service Constraints

    Full text link
    We consider the design of wireless queueing network control policies with particular focus on combining stability with additional application-dependent requirements. Thereby, we consequently pursue a cost function based approach that provides the flexibility to incorporate constraints and requirements of particular services or applications. As typical examples of such requirements, we consider the reduction of buffer underflows in case of streaming traffic, and energy efficiency in networks of battery powered nodes. Compared to the classical throughput optimal control problem, such requirements significantly complicate the control problem. We provide easily verifyable theoretical conditions for stability, and, additionally, compare various candidate cost functions applied to wireless networks with streaming media traffic. Moreover, we demonstrate how the framework can be applied to the problem of energy efficient routing, and we demonstrate the aplication of our framework in cross-layer control problems for wireless multihop networks, using an advanced power control scheme for interference mitigation, based on successive convex approximation. In all scenarios, the performance of our control framework is evaluated using extensive numerical simulations.Comment: Accepted for publication in IEEE Transactions on Control of Network Systems. arXiv admin note: text overlap with arXiv:1208.297
    corecore