1,557 research outputs found

    Performance Evaluation of Remanufacturing Systems

    Get PDF
    Implementation of new environmental legislation and public awareness has increased the responsibility on manufacturers. These responsibilities have forced manufacturers to begin remanufacturing and recycling of their goods after they are disposed or returned by customers. Ever since the introduction of remanufacturing, it has been applied in many industries and sectors. The remanufacturing process involves many uncertainties like time, quantity, and quality of returned products. Returned products are time sensitive products and their value drops with time. Thus, the returned products need to be remanufactured quickly to generate the maximum revenue. Every year millions of electronic products return to the manufacturer. However, only 10% to 20% of the returned products pass through the remanufacturing process, and the remaining products are disposed in the landfills. Uncertainties like failure rate of the servers, buffer capacity and inappropriate preventive maintenance policy would be highly responsible the delays in remanufacturing. In this thesis, a simulation based experimental methodology is used to determine the optimal preventive maintenance frequency and buffer allocation in a remanufacturing line, which will help to reduce the cycle time and increase the profit of the firm. Moreover, an estimated relationship between preventive maintenance frequency and MTBF (Mean Time Between Failure) is presented to determine the best preventive maintenance frequency for any industry. The solution approach is applied to a computer remanufacturing and a cell phone remanufacturing industry. Analysis of variance and regression analysis are performed to denote the influential factors in the remanufacturing line, and optimization is done by using the regression techniques and ANOVA results

    Adaptive policy of buffer allocation and preventive maintenance actions in unreliable production lines

    Get PDF
    Abstract The buffer allocation problem is an NP-hard combinatorial optimization problem, and it is an important design problem in manufacturing systems. The research proposed in this paper concerns a product line consisting of n unreliable machines with n − 1 buffers and a preventive maintenance policy. The focus of the research is to obtain a better trade-off between the buffer level and the preventive maintenance actions. This paper proposes a dynamic control of the buffers' level and the interval between two consecutive preventive actions. The set of the parameter of the proposed policy allows choosing the reduction in the costs or the increment of the throughput rate. A simulation model is developed to test the proposed model to the solution proposed in the literature. The proposed policy leads to better results in terms of total costs reduction keeping high production rate, while the design of a fixed level of buffer works better for lower production rates required

    Performance evaluation of the remanufacturing system prone to random failure and repair

    Get PDF
    Implementation of new environmental legislation and public awareness has increased the responsibility of manufacturers. Remanufacturing has been applied in many industries and sectors since its introduction. However, only 10% to 20% of the returned products pass through the remanufacturing process, and the remaining products are disposed in the landfills. Uncertainties like high failure rates of the servers, buffer capacities, and inappropriate preventive maintenance policies would be responsible for most of the delays in remanufacturing operations. In this paper, a simulation-based experimental methodology is used to determine the optimal preventive maintenance frequency and buffer allocation in a remanufacturing line. Moreover, an estimated relationship between preventive maintenance frequency and Mean Time Between Failure (MTBF), is presented to determine the best preventive maintenance frequency. The solution approach is applied to computer remanufacturing industry. Analysis of variance (ANOVA), and regression analysis are performed to denote the most influential factors to remanufacturing cycle time (performance measures). A case study is used to show the applicability of the modelling approach in assessing and improving the cycle time, and the profit of a remanufacturing line . Managerial insights are highlighted to support managers and decision-makers in their quest for more efficient and smooth operation of the remanufacturing system

    Joint Determination of Preventive Maintenance and Buffer Stock for a Production Unit under Lease

    Get PDF
    Purpose: The purpose of this work is to develop a mathematical model for simultaneously determining the optimal period of preventive maintenance actions and the optimal size of buffer stock for a production unit that is owned by a lessor and leased to a lessee under a lease contract. Design/methodology/approach: A mathematical model is formulated and a numerical procedure is developed for finding the optimal period of preventive maintenance actions and the optimal size of buffer stock to minimize the total expected costs considering both a lessor and a lessee over a lease period. Findings: The proposed model gives better solutions than those where the maintenance cost to the lessor and the production inventory cost to the lessee are minimized separately. Originality/value: The joint determination of preventive maintenance and safety stock is a topic that has been extensively studied for decades. The majority of the models reported in the literature implicitly assume that the firm owns the production unit and maintenance actions are done in-house. However, equipment acquisition through leasing is a common practice nowadays. Normally, under a lease contract, the lessor who owns the equipment is responsible for maintenance services. This may lead to a conflict between the lessor and the lessee concerning the optimal choice of maintenance actions. To solve this conflict, we propose a joint determination of preventive maintenance and safety stock model for a production unit under a lease. The objective of our model is to simultaneously determine the optimal period of preventive maintenance actions that the lessor needs to perform and the optimal size of buffer stock the lessee needs to produce so that the total combined expected costs to both parties over the lease period are minimizedPeer Reviewe

    Asignación de capacidades de almacenamiento de inventario en proceso de una línea de producción

    Get PDF

    On the design of a flow line with intermediate buffers and mixed corrective maintenance

    Get PDF
    We considered a mixed corrective maintenance policy for machines in a two-machine one-buffer flow line. The machines had stochastic processing times and suffered from unexpected failures. In the case of a failure, the machines were either minimally repaired or their failing components were replaced by spare parts. While the replacement strategy is rapid and the system can be considered new thereafter, spare parts provisioning and storage costs are very high. Thus, we additionally considered minimal repairs, which are less expensive and restore the system to a working condition at a minimum. We modeled the system as a continuous-time Markov chain. This approach was used to measure the performance of the flow line and the mixed corrective maintenance policy employed. To facilitate design decisions for the flow line, we considered both the cost of an interstage buffer and the maintenance costs for machines in line. We formulated an optimization problem based on a profit function that enables the simultaneous optimization of the buffer size and maintenance strategy. Our numerical analyses reveal useful insights into the performance and optimal design of the flow line depending on the utilized maintenance strategy

    Maintenance Management and Modeling in Modern Manufacturing Systems

    Get PDF

    Maintenance optimization of a production system with buffercapacity

    Get PDF
    Marketing;Optimization;produktieleer/ produktieplanning

    Development and Numerical Optimization of a System of Integrated Agents for Serial Production Lines

    Get PDF
    In modern high-volume industries, the serial production line (SPL) is of growing importance due to the inexorable increase in the complexity of manufacturing systems and the associated production costs. Optimal decisions regarding buffer size and the selection of components when designing and implementing an SPL can be difficult, often requiring complex analytical models, which can be difficult to conceive and construct. Here, we propose a model to evaluate and optimize the design of an SPL, integrating numerical simulation with artificial intelligence (AI). Numerous studies relating to the design of SPL systems have been published, but few have considered the simultaneous consideration of a number of decision variables. Indeed, the authors have been unable to locate in the published literature even one work that integrated the selection of components with the optimization of buffer sizes into a single framework. In this research, a System of Integrated Agents Numerical Optimization (SIGN) is developed by which the SPL design can be optimized. A SIGN consists of a components selection system and a decision support system. A SIGN aids the selection of machine tools, buffer sizes, and robots via the integration of AI and simulations. Using a purpose-developed interface, a user inputs the appropriate SPL parameters and settings, selects the decision-making and optimization techniques to use, and then displays output results. It will be implemented in open-source software to broaden the impact of the SIGN and extend its influence in industry and academia. It is expected that the results of this research project will significantly influence open-source manufacturing system design and, consequently, industrial and economic development
    • …
    corecore