6 research outputs found

    Bucket Game with Applications to Set Multicover and Dynamic Page Migration

    Full text link
    We present a simple two-person Bucket Game, based on throwing balls into buckets, and we discuss possible players’ strategies. We use these strategies to create an approximation algorithm for a generalization of the well known Set Cover problem, where we need to cover each element by at least k sets. Furthermore, we apply these strategies to construct a randomized algorithm for Dynamic Page Migration problem achieving the optimal competitive ratio against an oblivious adversary

    Randomized approximation algorithms : facility location, phylogenetic networks, Nash equilibria

    Get PDF
    Despite a great effort, researchers are unable to find efficient algorithms for a number of natural computational problems. Typically, it is possible to emphasize the hardness of such problems by proving that they are at least as hard as a number of other problems. In the language of computational complexity it means proving that the problem is complete for a certain class of problems. For optimization problems, we may consider to relax the requirement of the outcome to be optimal and accept an approximate (i.e., close to optimal) solution. For many of the problems that are hard to solve optimally, it is actually possible to efficiently find close to optimal solutions. In this thesis, we study algorithms for computing such approximate solutions

    Bucket game with applications to set multicover and dynamic page migration

    No full text
    We present a simple two-person Bucket Game, based on throwing balls into buckets, and we discuss possible players’ strategies. We use these strategies to create an approximation algorithm for a generalization of the well known Set Cover problem, where we need to cover each element by at least k sets. Furthermore, we apply these strategies to construct a randomized algorithm for Dynamic Page Migration problem achieving the optimal competitive ratio against an oblivious adversary

    Bucket Game with Applications to Set Multicover and Dynamic Page Migration

    No full text
    We present a simple two-person Bucket Game, based on throwing balls into buckets, and we discuss possible players’ strategies. We use these strategies to create an approximation algorithm for a generalization of the well known Set Cover problem, where we need to cover each element by at least k sets. Furthermore, we apply these strategies to construct a randomized algorithm for Dynamic Page Migration problem achieving the optimal competitive ratio against an oblivious adversary
    corecore