1,359 research outputs found

    On distributions of functionals of anomalous diffusion paths

    Full text link
    Functionals of Brownian motion have diverse applications in physics, mathematics, and other fields. The probability density function (PDF) of Brownian functionals satisfies the Feynman-Kac formula, which is a Schrodinger equation in imaginary time. In recent years there is a growing interest in particular functionals of non-Brownian motion, or anomalous diffusion, but no equation existed for their PDF. Here, we derive a fractional generalization of the Feynman-Kac equation for functionals of anomalous paths based on sub-diffusive continuous-time random walk. We also derive a backward equation and a generalization to Levy flights. Solutions are presented for a wide number of applications including the occupation time in half space and in an interval, the first passage time, the maximal displacement, and the hitting probability. We briefly discuss other fractional Schrodinger equations that recently appeared in the literature.Comment: 25 pages, 4 figure

    Distribution of the time at which the deviation of a Brownian motion is maximum before its first-passage time

    Full text link
    We calculate analytically the probability density P(tm)P(t_m) of the time tmt_m at which a continuous-time Brownian motion (with and without drift) attains its maximum before passing through the origin for the first time. We also compute the joint probability density P(M,tm)P(M,t_m) of the maximum MM and tmt_m. In the driftless case, we find that P(tm)P(t_m) has power-law tails: P(tm)tm3/2P(t_m)\sim t_m^{-3/2} for large tmt_m and P(tm)tm1/2P(t_m)\sim t_m^{-1/2} for small tmt_m. In presence of a drift towards the origin, P(tm)P(t_m) decays exponentially for large tmt_m. The results from numerical simulations are in excellent agreement with our analytical predictions.Comment: 13 pages, 5 figures. Published in Journal of Statistical Mechanics: Theory and Experiment (J. Stat. Mech. (2007) P10008, doi:10.1088/1742-5468/2007/10/P10008

    Functionals of the Brownian motion, localization and metric graphs

    Full text link
    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed : some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schr\"odinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of the planar Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and conclusion added. Several references adde

    Large Deviations in Stochastic Heat-Conduction Processes Provide a Gradient-Flow Structure for Heat Conduction

    Get PDF
    We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter mm, a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m)(m) and the KMP, and a nonlinear heat equation for the GBEP(aa). We prove the hydrodynamic limit rigorously for the BEP(m)(m), and give a formal derivation for the GBEP(aa). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form logρ-\log \rho; they involve dissipation or mobility terms of order ρ2\rho^2 for the linear heat equation, and a nonlinear function of ρ\rho for the nonlinear heat equation.Comment: 29 page

    Convex hull of n planar Brownian paths: an exact formula for the average number of edges

    Full text link
    We establish an exact formula for the average number of edges appearing on the boundary of the global convex hull of n independent Brownian paths in the plane. This requires the introduction of a counting criterion which amounts to "cutting off" edges that are, in a specific sense, small. The main argument consists in a mapping between planar Brownian convex hulls and configurations of constrained, independent linear Brownian motions. This new formula is confirmed by retrieving an existing exact result on the average perimeter of the boundary of Brownian convex hulls in the plane.Comment: 14 pages, 8 figures, submitted to JPA. (Typo corrected in equation (14).
    corecore