13 research outputs found

    Cooperative Spectrum Sharing in Cognitive Radio Networking

    Get PDF
    Driven by the massive growth in communications data traffic as well as flourishing users' demands, we need to fully utilize the existing scarce spectrum resource. However, there have been several studies and reports over the years showing that a large portion of licensed spectrum is actually underutilized in both temporal and spatial domains. Moreover, aiming at facing the dilemma among the fixed spectrum allocation, the ever enormous increasing traffic demand and the limited spectrum resource, cognitive radio (CR) was proposed by Mitola to alleviate the under usage of spectrum. Thus, cognitive radio networking (CRN) has emerged as a promising paradigm to improve the spectrum efficiency and utilization by allowing secondary users (SUs) to utilize the spectrum hole of primary users (PUs). By using spectrum sensing, SUs can opportunistically access spectrum holes for secondary transmission without interfering the transmissions of the PUs and efficient spectrum utilization by multiple PUs and SUs requires reliable detection of PUs. Nevertheless, sensing errors such as false alarm and misdetection are inevitable in practical networks. Hence, the assumption that SUs always obtain the exact channel availability information is unreasonable. In addition, spectrum sensing must be carried out continuously and the SU must terminate its transmission as soon as it senses the re-occupancy by a PU. As a better alternative of spectrum sensing, cooperation has been leveraged in CRN, which is referred as cooperative cognitive radio networking (CCRN). In CCRN, in order to obtain the transmission opportunities, SUs negotiate with the PUs for accessing the spectrum by providing tangible service for PUs. In this thesis, we study cluster based spectrum sharing mechanism for CCRN and investigate on exploiting the cooperative technique in heterogeneous network. First, we develop cooperation protocols for CRN. Simultaneous transmission can be realized through quadrature signalling method in our proposed cooperation protocol. The optimal power allocation has been analyzed and closed-form solution has been derived for amplify and forward mode. Second, we study a cluster based spectrum sharing mechanism. The spectrum sharing is formulated as a combinatorial non-linear optimization problem which is NP-hard. Afterwards, we solve this problem by decomposing it into cluster allocation and time assignment, and we show that the result is close to the optimal solution. Third, we propose a macrocell-femtocell network cooperation scheme for heterogeneous networks under closed access mode. The cooperation between the femtocell network and macrocell network is investigated. By implementing the cooperation, not only the macrocell users' (MUEs') and femtocell users' (FUEs') utility can be improved compared with the non-cooperation case, but also the energy consumption as well as the interference from the femtocell network to the macrocell network can be reduced

    SPECTRUM SHARING IN COGNITIVE RADIO NETWORKS WITH QUALITY OF SERVICE AWARENESS

    Get PDF
    The goal of this thesis is to study performance of cognitive radio networks in terms of total spectrum utilization and throughput of secondary networks under perfect and imperfect sensing for Additive White Gaussian Noise (AWGN) and fading channels. The effect of imperfect sensing was studied by applying non-collaborative and collaborative sensing techniques using energy detecting and square law combining techniques, respectively. Spectrum allocation for heterogeneous networks in cognitive radio networks was discussed and a new sharing algorithm that guarantee Quality of Service (QoS) for different secondary users’ applications was proposed. The throughput degradation of secondary users due to the activities of the primary users was explored by varying the arrival rate of the primary users in a given spectrum band. Computer simulation showed that increasing the primary user’s activity will increase the total spectrum utilization but decreases the secondary users’ throughput simultaneously. The effect of the received Signal to Noise Ratio (SNR) of the primary user on the cognitive radio network performance is studied in which, a high SNR of primary users led to a higher throughput of secondary network in AWGN channels compared to Nakagami fading channels. The effect of applying cooperative sensing is also presented in this thesis. As we increased the number of cooperating sensors, the network throughput increased which proves the advantage of applying cooperative sensing. A spectrum allocation algorithm for heterogeneous network model is developed to study the QoS assurance of secondary users in cognitive radio networks. The system performance of the heterogeneous network was investigated in terms of the total spectrum utilization. It is found that, higher number of secondary users, better channel’s condition and low required QoS of applications would increase the spectrum utilization significantly. vii In this thesis, the proposed allocation algorithm was applied to the heterogeneous cognitive radio model and its performance was compared to the First Come First Served (FCFS) algorithm in both AWGN and fading channels. The proposed algorithm provided a higher average SNR and spectrum utilization than FCFS algorithm and guaranteed the QoS requirement for applications of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total applications’ data rate increases significantly. The proposed algorithm guaranteed the QoS requirement for each application of secondary users. The effect of imperfect sensing on the system performance was investigated, and it was shown that, as the probability of detection increases the total data rate increases significantly

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time
    corecore