68 research outputs found

    Partial multinode broadcast and partial exchange algorithms for d-dimensional meshes

    Get PDF
    Caption title. "Revision of January 1992."Includes bibliographical references (p. 24-26).Supported by NSF. NSF-ECS-8519058 Supported by ARO. DAAL03-86-K-0171by Emmanouel A. Varvarigos and Dimitri P. Bertsekas

    On Eulerian orientations of even-degree hypercubes

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.orl.2018.09.002 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/It is well known that every Eulerian orientation of an Eulerian 2k-edge connected (undirected) graph is strongly k-edge connected. A long-standing goal in the area is to obtain analogous results for other types of connectivity, such as node connectivity. We show that every Eulerian orientation of the hypercube of degree 2k is strongly k-node connected.Natural Sciences and Engineering Research Council of Canada ["RGPIN–2014–04351"

    Communication algorithms for isotropic tasks in hypercubes and wraparound meshes

    Get PDF
    Cover title.Includes bibliographical references (p. 29-30).Research supported by the NSF. NSF-ECS-8519058 Research supported by the ARO. DAAL03-86-K-0171by Emmanouel A. Varvarigos and Dimitri P. Bertsekas

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    Broadcasting in Hyper-cylinder graphs

    Get PDF
    Broadcasting in computer networking means the dissemination of information, which is known initially only at some nodes, to all network members. The goal is to inform every node in the minimal time possible. There are few models for broadcasting; the simplest and the historical model is called the Classical model. In the Classical model, dissemination happens in synchronous rounds, wherein a node may only inform one of its neighbors. The broadcast question is: What is the minimum number of rounds needed for broadcasting, and what broadcast scheme achieves it? For general graphs, these questions are NP-hard, and it is known to be at least 3 - ε inapproximable for any real ε > 0. Even for some very restricted classes of graphs, the questions remain as an NP-hard problem. Little is known about broadcasting in restricted graphs, and only a few classes have a polynomial solution. Parallel and distributed computing is one of the important domains which relies on efficient broadcasting. Hypercube and torus are the most used network topology in this domain. The widespread use is not only due to their simplicity but also is for their efficiency and high robustness (e.g., fault tolerance) while having an acceptable number of links. In this thesis, it is observed that the Cartesian product of a number of path and cycle graphs produces a valuable set of topologies, we called hyper-cylinders, which contain hypercube and Torus as well. Any hyper-cylinder shares many of the beneficial features of hypercube and torus and might be a suitable substitution in some cases. Some hyper-cylinders are also similar to other practically used topologies such as cube-connected cycles. In this thesis, the effect of the Cartesian product on broadcasting and broadcasting of hyper-cylinders under the Classical and Messy models is studied. This will add a valuable class of graphs to the limited classes of graphs which have a polynomially computable broadcast time. In the end, the relation between worst-case originators and diameters in trees is studied, which may help in the broadcast study of a larger class of graphs where any tree is allowed instead of a path in the Cartesian product

    Subset barrier synchronization on a private-memory parallel system

    Full text link

    Cost-performance trade-offs in Manhattan Street Network versus 2-D torus

    Full text link

    Efficient randomised broadcasting in random regular networks with applications in peer-to-peer systems

    Get PDF
    We consider broadcasting in random d-regular graphs by using a simple modification of the random phone call model introduced by Karp et al. (Proceedings of the FOCS ’00, 2000). In the phone call model, in every time step, each node calls a randomly chosen neighbour to establish a communication channel to this node. The communication channels can then be used bi-directionally to transmit messages. We show that, if we allow every node to choose four distinct neighbours instead of one, then the average number of message transmissions per node required to broadcast a message efficiently decreases exponentially. Formally, we present an algorithm that has time complexity O(logn) and uses O(nloglogn) transmissions per message. In contrast, we show for the standard model that every distributed algorithm in a restricted address-oblivious model that broadcasts a message in time O(logn) requires Ω(nlogn/logd) message transmissions. Our algorithm efficiently handles limited communication failures, only requires rough estimates of the number of nodes, and is robust against limited changes in the size of the network. Our results have applications in peer-to-peer networks and replicated databases. Preliminary version published in the Proceedings of the 27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2008)

    New fault-tolerant routing algorithms for k-ary n-cube networks

    Get PDF
    The interconnection network is one of the most crucial components in a multicomputer as it greatly influences the overall system performance. Networks belonging to the family of k-ary n-cubes (e.g., tori and hypercubes) have been widely adopted in practical machines due to their desirable properties, including a low diameter, symmetry, regularity, and ability to exploit communication locality found in many real-world parallel applications. A routing algorithm specifies how a message selects a path to cross from source to destination, and has great impact on network performance. Routing in fault-free networks has been extensively studied in the past. As the network size scales up the probability of processor and link failure also increases. It is therefore essential to design fault-tolerant routing algorithms that allow messages to reach their destinations even in the presence of faulty components (links and nodes). Although many fault-tolerant routing algorithms have been proposed for common multicomputer networks, e.g. hypercubes and meshes, little research has been devoted to developing fault-tolerant routing for well-known versions of k-ary n-cubes, such as 2 and 3- dimensional tori. Previous work on fault-tolerant routing has focused on designing algorithms with strict conditions imposed on the number of faulty components (nodes and links) or their locations in the network. Most existing fault-tolerant routing algorithms have assumed that a node knows either only the status of its neighbours (such a model is called local-information-based) or the status of all nodes (global-information-based). The main challenge is to devise a simple and efficient way of representing limited global fault information that allows optimal or near-optimal fault-tolerant routing. This thesis proposes two new limited-global-information-based fault-tolerant routing algorithms for k-ary n-cubes, namely the unsafety vectors and probability vectors algorithms. While the first algorithm uses a deterministic approach, which has been widely employed by other existing algorithms, the second algorithm is the first that uses probability-based fault- tolerant routing. These two algorithms have two important advantages over those already existing in the relevant literature. Both algorithms ensure fault-tolerance under relaxed assumptions, regarding the number of faulty components and their locations in the network. Furthermore, the new algorithms are more general in that they can easily be adapted to different topologies, including those that belong to the family of k-ary n-cubes (e.g. tori and hypercubes) and those that do not (e.g., generalised hypercubes and meshes). Since very little work has considered fault-tolerant routing in k-ary n-cubes, this study compares the relative performance merits of the two proposed algorithms, the unsafety and probability vectors, on these networks. The results reveal that for practical number of faulty nodes, both algorithms achieve good performance levels. However, the probability vectors algorithm has the advantage of being simpler to implement. Since previous research has focused mostly on the hypercube, this study adapts the new algorithms to the hypercube in order to conduct a comparative study against the recently proposed safety vectors algorithm. Results from extensive simulation experiments demonstrate that our algorithms exhibit superior performance in terms of reachability (chances of a message reaching its destination), deviation from optimality (average difference between minimum distance and actual routing distance), and looping (chances of a message continuously looping in the network without reaching destination) to the safety vectors

    Some studies on the multi-mesh architecture.

    Get PDF
    In this thesis, we have reported our investigations on interconnection network architectures based on the idea of a recently proposed multi-processor architecture, Multi-Mesh network. This includes the development of a new interconnection architecture, study of its topological properties and a proposal for implementing Multi-Mesh using optical technology. We have presented a new network topology, called the 3D Multi-Mesh (3D MM) that is an extension of the Multi-Mesh architecture [DDS99]. This network consists of n3 three-dimensional meshes (termed as 3D blocks), each having n3 processors, interconnected in a suitable manner so that the resulting topology is 6-regular with n6 processors and a diameter of only 3n. We have shown that the connectivity of this network is 6. We have explored an algorithm for point-to-point communication on the 3D MM. It is expected that this architecture will enable more efficient algorithm mapping compared to existing architectures. We have also proposed some implementation of the multi-mesh avoiding the electronic bottleneck due to long copper wires for communication between some processors. Our implementation considers a number of realistic scenarios based on hybrid (optical and electronic) communication. One unique feature of this investigation is our use of WDM wavelength routing and the protection scheme. We are not aware of any implementation of interconnection networks using these techniques.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .A32. Source: Masters Abstracts International, Volume: 43-03, page: 0868. Adviser: Subir Bandyopadhyay. Thesis (M.Sc.)--University of Windsor (Canada), 2004
    • …
    corecore