210 research outputs found

    General broadcasting algorithms in one-port wormhole routed hypercubes

    Full text link
    Wormhole routing has been accepted as an efficient switching mechanism in point-to-point interconnection networks. Here the network resource, i.e. node buffers and communication channels, are effectively utilized to deliver message across the network; We consider the problem of broadcasting a message in the hypercue equipped with the wormhole switching mechanism. The model is a generalization of an earlier work and considers a broadcast path-length of {dollar}m\ (1\leq m\leq n{dollar}) in the n-cube with a single-port communication capability. In this thesis, the scheme of e-cube and a Gray code path routing and intermediate reception capability have been adopted in order to solve the problem of broadcasting in one-port wormhole routed hypercubes. Two methods have been suggested; one is based on utilizing the Gray codes (Gray code path-based routing), while the other is based on the recursive partitioning of the cube (cube-based routing). The number of routing steps in both methods are compared to those in the previous results, as well as to the lower bounds derived based on the path-length m assumption. A cube-based and a path-based algorithm give {dollar}T(R)+(k\sb{c}+1)T(m){dollar} and {dollar}k\sb{G} +T(m){dollar} routing steps, respectively. By comparison with routing steps of both algorithms, the performance of the path-based algorithm shows better than that of the cube-based; The results of this work are significant and can be used for immediate implementation in contemporary machines most of which are equipped with wormhole routing and serial communication capability

    Near-optimal broadcast in all-port wormhole-routed hypercubes using error-correcting codes

    Full text link
    A new broadcasting method is presented for hypercubes with wormhole routing mechanism. The communication model assumed allows an n-dimensional hypercube to have at most n concurrent I/O communication along its ports. It assumes a distance insensitivity of (n + 1) with no intermediate reception capability for the nodes. The approach is based on determination of the set of nodes called stations in the hypercube. Once stations are identified, node disjoint paths are formed from the source to all stations. The broadcasting is accomplished first by sending the message to all stations, which will inform the rest of the nodes. To establish node-disjoint paths between the source node and all stations, we introduce a new routing strategy. We prove that multicasting can be done in one routing step as long as the number of destination nodes are at most n in an n-dimensional hypercube. The number of broadcasting steps using our routing is equal to or smaller than that obtained in an earlier work; this number is optimal for all hypercube dimensions n ≤ 12, except for n = 10

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    Design and Analysis of Optical Interconnection Networks for Parallel Computation.

    Get PDF
    In this doctoral research, we propose several novel protocols and topologies for the interconnection of massively parallel processors. These new technologies achieve considerable improvements in system performance and structure simplicity. Currently, synchronous protocols are used in optical TDM buses. The major disadvantage of a synchronous protocol is the waste of packet slots. To offset this inherent drawback of synchronous TDM, a pipelined asynchronous TDM optical bus is proposed. The simulation results show that the performance of the proposed bus is significantly better than that of known pipelined synchronous TDM optical buses. Practically, the computation power of the plain TDM protocol is limited. Various extensions must be added to the system. In this research, a new pipelined optical TDM bus for implementing a linear array parallel computer architecture is proposed. The switches on the receiving segment of the bus can be dynamically controlled, which make the system highly reconfigurable. To build large and scalable systems, we need new network architectures that are suitable for optical interconnections. A new kind of reconfigurable bus called segmented bus is introduced to achieve reduced structure simplicity and increased concurrency. We show that parallel architectures based on segmented buses are versatile by showing that it can simulate parallel communication patterns supported by a wide variety of networks with small slowdown factors. New kinds of interconnection networks, the hypernetworks, have been proposed recently. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the dual of a point-to-point network. Hypercube Q\sb{n}, where n is the dimension, is a very popular point-to-point network. It is interesting to construct hypernetworks from the dual Q\sbsp{n}{*} of hypercube of Q\sb{n}. In this research, the properties of Q\sbsp{n}{*} are investigated and a set of fundamental data communication algorithms for Q\sbsp{n}{*} are presented. The results indicate that the Q\sbsp{n}{*} hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems

    An Experimental Analysis of Parallel Sorting Algorithms

    Full text link

    Switching techniques for broadband ISDN

    Get PDF
    The properties of switching techniques suitable for use in broadband networks have been investigated. Methods for evaluating the performance of such switches have been reviewed. A notation has been introduced to describe a class of binary self-routing networks. Hence a technique has been developed for determining the nature of the equivalence between two networks drawn from this class. The necessary and sufficient condition for two packets not to collide in a binary self-routing network has been obtained. This has been used to prove the non-blocking property of the Batcher-banyan switch. A condition for a three-stage network with channel grouping and link speed-up to be nonblocking has been obtained, of which previous conditions are special cases. A new three-stage switch architecture has been proposed, based upon a novel cell-level algorithm for path allocation in the intermediate stage of the switch. The algorithm is suited to hardware implementation using parallelism to achieve a very short execution time. An array of processors is required to implement the algorithm The processor has been shown to be of simple design. It must be initialised with a count representing the number of cells requesting a given output module. A fast method has been described for performing the request counting using a non-blocking binary self-routing network. Hardware is also required to forward routing tags from the processors to the appropriate data cells, when they have been allocated a path through the intermediate stage. A method of distributing these routing tags by means of a non-blocking copy network has been presented. The performance of the new path allocation algorithm has been determined by simulation. The rate of cell loss can increase substantially in a three-stage switch when the output modules are non-uniformly loaded. It has been shown that the appropriate use of channel grouping in the intermediate stage of the switch can reduce the effect of non-uniform loading on performance

    Reliability Analysis of the Hypercube Architecture.

    Get PDF
    This dissertation presents improved techniques for analyzing network-connected (NCF), 2-connected (2CF), task-based (TBF), and subcube (SF) functionality measures in a hypercube multiprocessor with faulty processing elements (PE) and/or communication elements (CE). These measures help study system-level fault tolerance issues and relate to various application modes in the hypercube. Solutions discussed in the text fall into probabilistic and deterministic models. The probabilistic measure assumes a stochastic graph of the hypercube where PE\u27s and/or CE\u27s may fail with certain probabilities, while the deterministic model considers that some system components are already failed and aims to determine the system functionality. For probabilistic model, MIL-HDBK-217F is used to predict PE and CE failure rates for an Intel iPSC system. First, a technique called CAREL is presented. A proof of its correctness is included in an appendix. Using the shelling ordering concept, CAREL is shown to solve the exact probabilistic NCF measure for a hypercube in time polynomial in the number of spanning trees. However, this number increases exponentially in the hypercube dimension. This dissertation, then, aims to more efficiently obtain lower and upper bounds on the measures. Algorithms, presented in the text, generate tighter bounds than had been obtained previously and run in time polynomial in the cube dimension. The proposed algorithms for probabilistic 2CF measure consider PE and/or CE failures. In attempting to evaluate deterministic measures, a hybrid method for fault tolerant broadcasting in the hypercube is proposed. This method combines the favorable features of redundant and non-redundant techniques. A generalized result on the deterministic TBF measure for the hypercube is then described. Two distributed algorithms are proposed to identify the largest operational subcubes in a hypercube C\sb{n} with faulty PE\u27s. Method 1, called LOS1, requires a list of faulty components and utilizes the CMB operator of CAREL to solve the problem. In case the number of unavailable nodes (faulty or busy) increases, an alternative distributed approach, called LOS2, processes m available nodes in O(mn) time. The proposed techniques are simple and efficient

    Subject index volumes 1–92

    Get PDF

    Improving the Scalability of High Performance Computer Systems

    Full text link
    Improving the performance of future computing systems will be based upon the ability of increasing the scalability of current technology. New paths need to be explored, as operating principles that were applied up to now are becoming irrelevant for upcoming computer architectures. It appears that scaling the number of cores, processors and nodes within an system represents the only feasible alternative to achieve Exascale performance. To accomplish this goal, we propose three novel techniques addressing different layers of computer systems. The Tightly Coupled Cluster technique significantly improves the communication for inter node communication within compute clusters. By improving the latency by an order of magnitude over existing solutions the cost of communication is considerably reduced. This enables to exploit fine grain parallelism within applications, thereby, extending the scalability considerably. The mechanism virtually moves the network interconnect into the processor, bypassing the latency of the I/O interface and rendering protocol conversions unnecessary. The technique is implemented entirely through firmware and kernel layer software utilizing off-the-shelf AMD processors. We present a proof-of-concept implementation and real world benchmarks to demonstrate the superior performance of our technique. In particular, our approach achieves a software-to-software communication latency of 240 ns between two remote compute nodes. The second part of the dissertation introduces a new framework for scalable Networks-on-Chip. A novel rapid prototyping methodology is proposed, that accelerates the design and implementation substantially. Due to its flexibility and modularity a large application space is covered ranging from Systems-on-chip, to high performance many-core processors. The Network-on-Chip compiler enables to generate complex networks in the form of synthesizable register transfer level code from an abstract design description. Our engine supports different target technologies including Field Programmable Gate Arrays and Application Specific Integrated Circuits. The framework enables to build large designs while minimizing development and verification efforts. Many topologies and routing algorithms are supported by partitioning the tasks into several layers and by the introduction of a protocol agnostic architecture. We provide a thorough evaluation of the design that shows excellent results regarding performance and scalability. The third part of the dissertation addresses the Processor-Memory Interface within computer architectures. The increasing compute power of many-core processors, leads to an equally growing demand for more memory bandwidth and capacity. Current processor designs exhibit physical limitations that restrict the scalability of main memory. To address this issue we propose a memory extension technique that attaches large amounts of DRAM memory to the processor via a low pin count interface using high speed serial transceivers. Our technique transparently integrates the extension memory into the system architecture by providing full cache coherency. Therefore, applications can utilize the memory extension by applying regular shared memory programming techniques. By supporting daisy chained memory extension devices and by introducing the asymmetric probing approach, the proposed mechanism ensures high scalability. We furthermore propose a DMA offloading technique to improve the performance of the processor memory interface. The design has been implemented in a Field Programmable Gate Array based prototype. Driver software and firmware modifications have been developed to bring up the prototype in a Linux based system. We show microbenchmarks that prove the feasibility of our design
    corecore