181 research outputs found

    Broadcasting in LTE-Advanced networks using multihop D2D communications

    Get PDF
    In an LTE-Advanced network, network-controlled Device-to-Device (D2D) communications can be combined in a multihop fashion to distribute broadcasts over user-defined (and possibly large) areas, with small latencies and occupying few resources. Such a service may be exploited for several purposes, (e.g. Internet of Things, Vehicular communications). Engineering a multihop D2D-based broadcast service requires working at both the application level on the User Equipment (UE) and at the resource-allocation level within the eNodeBs. This paper describes the necessary modifications at both the UE and the eNodeB, what the main issues are, and how to solve them efficiently. We evaluate the performance of the above service using system-level simulations, and demonstrate its advantages over standard broadcasting techniques

    A fast and reliable broadcast service for LTE-advanced exploiting multihop device-to-device transmissions

    Get PDF
    Several applications, from the Internet of Things for smart cities to those for vehicular networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to reach all peers in a geographical neighborhood around the originator of a message, as well as ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service using traditional infrastructure-based communications. We argue, instead, that network-controlled device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this service. To substantiate the above claim, we design a proximity-based broadcast service which exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using system-level simulations, and demonstrate that it is fast, reliable and economical from a resource consumption standpoint

    Simulating device-to-device communications in OMNeT++ with SimuLTE: scenarios and configurations

    Get PDF
    SimuLTE is a tool that enables system-level simulations of LTE/LTE-Advanced networks within OMNeT++. It is designed such that it can be plugged within network elements as an additional Network Interface Card (NIC) to those already provided by the INET framework (e.g. Wi-Fi). Recently, device-to-device (D2D) technology has been widely studied by the research community, as a mechanism to allow direct communications between devices of a LTE cellular network. In this work, we present how SimuLTE can be employed to simulate both one-to-one and one-to-many D2D communications, so that the latter can be exploited as a new communication opportunity in several research fields, like vehicular networks, IoT and machine-to-machine (M2M) applications

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Device-to-Device Communication and Multihop Transmission for Future Cellular Networks

    Get PDF
    The next generation wireless networks i.e. 5G aim to provide multi-Gbps data traffic, in order to satisfy the increasing demand for high-definition video, among other high data rate services, as well as the exponential growth in mobile subscribers. To achieve this dramatic increase in data rates, current research is focused on improving the capacity of current 4G network standards, based on Long Term Evolution (LTE), before radical changes are exploited which could include acquiring additional/new spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell edge users vulnerable to inter-cell interference. In addition, wireless transmission is commonly hindered by fading and pathloss. In this direction, this thesis focuses on improving the performance of cell edge users in LTE and LTE-Advanced (LTE-A) networks by initially implementing a new Coordinated Multi-Point (CoMP) algorithm to mitigate cell edge user interference. Subsequently Device-to-Device (D2D) communication is investigated as the enabling technology for maximising Resource Block (RB) utilisation in current 4G and emerging 5G networks. It is demonstrated that the application, as an extension to the above, of novel power control algorithms, to reduce the required D2D TX power, and multihop transmission for relaying D2D traffic, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond-the-state-of-the-art LTE system-level simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards. Additionally, a novel interference modelling scheme using the ‘wrap around’ technique was proposed and implemented that maintained the topology of flat surfaced maps, allowing for use with cell planning tools while obtaining accurate and timely results in the SLS compared to the few existing platforms. For the proposed CoMP algorithm, the adaptive beamforming technique was employed to reduce interference on the cell edge UEs by applying Coordinated Scheduling (CoSH) between cooperating cells. Simulation results show up to 2-fold improvement in terms of throughput, and also shows SINR gain for the cell edge UEs in the cooperating cells. Furthermore, D2D communication underlaying the LTE network (and future generation of wireless networks) was investigated. The technology exploits the proximity of users in a network to achieve higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the Evolved Node B (eNB) i.e. by direct communication between User Equipment (UE). Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for a D2D receiver, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNB in the network. The impact of interference from the simultaneous transmission however impedes the achievable data rates of cellular UEs in the network, especially at the cell edge. Thus, a power control algorithm was proposed to mitigate the impact of interference in the hybrid network (network consisting of both cellular and D2D UEs). It was implemented by setting a minimum SINR threshold so that the cellular UEs achieve a minimum performance, and equally a maximum SINR threshold to establish fairness for the D2D transmission as well. Simulation results show an increase in the cell edge throughput and notable improvement in the overall SINR distribution of UEs in the hybrid network. Additionally, multihop transmission for D2D UEs was investigated in the hybrid network: traditionally, the scheme is implemented to relay cellular traffic in a homogenous network. Contrary to most current studies where D2D UEs are employed to relay cellular traffic, the use of idle nodes to relay D2D traffic was implemented uniquely in this thesis. Simulation results show improvement in D2D receiver throughput with multihop transmission, which was significantly better than that of the same UEs performance with equivalent distance between the D2D pair when using single hop transmission

    Modeling network-controlled device-to-device communications in SimuLTE

    Get PDF
    In Long Term Evolution-Advanced (LTE-A), network-controlled device-to-device (D2D) communications allow User Equipments (UEs) to communicate directly, without involving the Evolved Node-B in data relaying, while the latter still retains control of resource allocation. The above paradigm allows reduced latencies for the UEs and increased resource efficiency for the network operator, and is therefore foreseen to support several services, from Machine-to-machine to vehicular communications. D2D communications introduce research challenges that might affect the performance of applications and upper-layer protocols, hence simulations represent a valuable tool for evaluating these aspects. However, simulating D2D features might pose additional com-putational burden to the simulation environment. To this aim, a careful modeling is required in order to reduce computational overhead. In this paper we describe our modeling of net-work-controlled D2D communications in SimuLTE, a system-level LTE-A simulation library based on OMNeT++. We describe the core modeling choices of SimuLTE, and show how these allow an easy extension to D2D communications. Moreover, we describe in detail the modeling of specific problems arising with D2D communications, such as scheduling with frequency reuse, connection mode switching and broadcast transmission. We document the computational efficiency of our modeling choices, showing that simulation of D2D communications is not more complex than simulation of classical cellular communications of comparable scale. Results show that the heaviest computational burden of D2D communication lies in estimating the Sidelink channel quality. We show that SimuLTE allows one to evaluate the interplay between D2D communication and end-to-end performance of UDP- and TCP-based services. Moreover, we assess the accuracy of using a binary interference model for frequency reuse, and we evaluate the trade-off between speed of execution and accuracy in modeling the reception probability

    Network Coding for Cooperation in Wireless Networks

    Get PDF
    • …
    corecore