2,327 research outputs found

    Latency Optimal Broadcasting in Noisy Wireless Mesh Networks

    Full text link
    In this paper, we adopt a new noisy wireless network model introduced very recently by Censor-Hillel et al. in [ACM PODC 2017, CHHZ17]. More specifically, for a given noise parameter p[0,1],p\in [0,1], any sender has a probability of pp of transmitting noise or any receiver of a single transmission in its neighborhood has a probability pp of receiving noise. In this paper, we first propose a new asymptotically latency-optimal approximation algorithm (under faultless model) that can complete single-message broadcasting task in D+O(log2n)D+O(\log^2 n) time units/rounds in any WMN of size n,n, and diameter DD. We then show this diameter-linear broadcasting algorithm remains robust under the noisy wireless network model and also improves the currently best known result in CHHZ17 by a Θ(loglogn)\Theta(\log\log n) factor. In this paper, we also further extend our robust single-message broadcasting algorithm to kk multi-message broadcasting scenario and show it can broadcast kk messages in O(D+klogn+log2n)O(D+k\log n+\log^2 n) time rounds. This new robust multi-message broadcasting scheme is not only asymptotically optimal but also answers affirmatively the problem left open in CHHZ17 on the existence of an algorithm that is robust to sender and receiver faults and can broadcast kk messages in O(D+klogn+polylog(n))O(D+k\log n + polylog(n)) time rounds.Comment: arXiv admin note: text overlap with arXiv:1705.07369 by other author

    An FPT Algorithm for Directed Spanning k-Leaf

    Get PDF
    An out-branching of a directed graph is a rooted spanning tree with all arcs directed outwards from the root. We consider the problem of deciding whether a given directed graph D has an out-branching with at least k leaves (Directed Spanning k-Leaf). We prove that this problem is fixed parameter tractable, when k is chosen as the parameter. Previously this was only known for restricted classes of directed graphs. The main new ingredient in our approach is a lemma that shows that given a locally optimal out-branching of a directed graph in which every arc is part of at least one out-branching, either an out-branching with at least k leaves exists, or a path decomposition with width O(k^3) can be found. This enables a dynamic programming based algorithm of running time 2^{O(k^3 \log k)} n^{O(1)}, where n=|V(D)|.Comment: 17 pages, 8 figure

    Near Optimal Parallel Algorithms for Dynamic DFS in Undirected Graphs

    Full text link
    Depth first search (DFS) tree is a fundamental data structure for solving graph problems. The classical algorithm [SiComp74] for building a DFS tree requires O(m+n)O(m+n) time for a given graph GG having nn vertices and mm edges. Recently, Baswana et al. [SODA16] presented a simple algorithm for updating DFS tree of an undirected graph after an edge/vertex update in O~(n)\tilde{O}(n) time. However, their algorithm is strictly sequential. We present an algorithm achieving similar bounds, that can be adopted easily to the parallel environment. In the parallel model, a DFS tree can be computed from scratch using mm processors in expected O~(1)\tilde{O}(1) time [SiComp90] on an EREW PRAM, whereas the best deterministic algorithm takes O~(n)\tilde{O}(\sqrt{n}) time [SiComp90,JAlg93] on a CRCW PRAM. Our algorithm can be used to develop optimal (upto polylog n factors deterministic algorithms for maintaining fully dynamic DFS and fault tolerant DFS, of an undirected graph. 1- Parallel Fully Dynamic DFS: Given an arbitrary online sequence of vertex/edge updates, we can maintain a DFS tree of an undirected graph in O~(1)\tilde{O}(1) time per update using mm processors on an EREW PRAM. 2- Parallel Fault tolerant DFS: An undirected graph can be preprocessed to build a data structure of size O(m) such that for a set of kk updates (where kk is constant) in the graph, the updated DFS tree can be computed in O~(1)\tilde{O}(1) time using nn processors on an EREW PRAM. Moreover, our fully dynamic DFS algorithm provides, in a seamless manner, nearly optimal (upto polylog n factors) algorithms for maintaining a DFS tree in semi-streaming model and a restricted distributed model. These are the first parallel, semi-streaming and distributed algorithms for maintaining a DFS tree in the dynamic setting.Comment: Accepted to appear in SPAA'17, 32 Pages, 5 Figure

    On Efficient Distributed Construction of Near Optimal Routing Schemes

    Full text link
    Given a distributed network represented by a weighted undirected graph G=(V,E)G=(V,E) on nn vertices, and a parameter kk, we devise a distributed algorithm that computes a routing scheme in (n1/2+1/k+D)no(1)(n^{1/2+1/k}+D)\cdot n^{o(1)} rounds, where DD is the hop-diameter of the network. The running time matches the lower bound of Ω~(n1/2+D)\tilde{\Omega}(n^{1/2}+D) rounds (which holds for any scheme with polynomial stretch), up to lower order terms. The routing tables are of size O~(n1/k)\tilde{O}(n^{1/k}), the labels are of size O(klog2n)O(k\log^2n), and every packet is routed on a path suffering stretch at most 4k5+o(1)4k-5+o(1). Our construction nearly matches the state-of-the-art for routing schemes built in a centralized sequential manner. The previous best algorithms for building routing tables in a distributed small messages model were by \cite[STOC 2013]{LP13} and \cite[PODC 2015]{LP15}. The former has similar properties but suffers from substantially larger routing tables of size O(n1/2+1/k)O(n^{1/2+1/k}), while the latter has sub-optimal running time of O~(min{(nD)1/2n1/k,n2/3+2/(3k)+D})\tilde{O}(\min\{(nD)^{1/2}\cdot n^{1/k},n^{2/3+2/(3k)}+D\})

    Completely Independent Spanning Trees in Line Graphs

    Full text link
    Completely independent spanning trees in a graph GG are spanning trees of GG such that for any two distinct vertices of GG, the paths between them in the spanning trees are pairwise edge-disjoint and internally vertex-disjoint. In this paper, we present a tight lower bound on the maximum number of completely independent spanning trees in L(G)L(G), where L(G)L(G) denotes the line graph of a graph GG. Based on a new characterization of a graph with kk completely independent spanning trees, we also show that for any complete graph KnK_n of order n4n \geq 4, there are n+12\lfloor \frac{n+1}{2} \rfloor completely independent spanning trees in L(Kn)L(K_n) where the number n+12\lfloor \frac{n+1}{2} \rfloor is optimal, such that n+12\lfloor \frac{n+1}{2} \rfloor completely independent spanning trees still exist in the graph obtained from L(Kn)L(K_n) by deleting any vertex (respectively, any induced path of order at most n2\frac{n}{2}) for n=4n = 4 or odd n5n \geq 5 (respectively, even n6n \geq 6). Concerning the connectivity and the number of completely independent spanning trees, we moreover show the following, where δ(G)\delta(G) denotes the minimum degree of GG.  \ \bullet Every 2k2k-connected line graph L(G)L(G) has kk completely independent spanning trees if GG is not super edge-connected or δ(G)2k\delta(G) \geq 2k.  \ \bullet Every (4k2)(4k-2)-connected line graph L(G)L(G) has kk completely independent spanning trees if GG is regular.  \ \bullet Every (k2+2k1)(k^2+2k-1)-connected line graph L(G)L(G) with δ(G)k+1\delta(G) \geq k+1 has kk completely independent spanning trees.Comment: 20 pages with 5 figure

    Constant-Time Algorithms for Minimum Spanning Tree and Related Problems on Processor Array with Reconfigurable Bus Systems

    Get PDF
    [[abstract]]A processor array with a reconfigurable bus system is a parallel computation model that consists of a processor array and a reconfigurable bus system. In this paper, a constant-time algorithm is proposed on this model for finding the cycles in an undirected graph. We can use this algorithm to decide whether a specified edge belongs to the minimum spanning tree of the graph or not. This cycle-finding algorithm is designed on a two-dimensional n×nn\times n processor array with a reconfigurable bus system, where nn is the number of vertices in the graph. Based on this cycle-finding algorithm, the minimum spanning tree problem and the spanning tree problem can be solved in O(1) time by using fewer processors than before, O(n×m×nn\times m\times n) and O(n3n^3) processors respectively. This is a substantial improvement over previous known results. Moreover, we also propose two constant-time algorithms for solving the minimum spanning tree verification problem and spanning tree verification problem by using O(n3n^3) and O(n2n^2) processors, respectively.

    On Temporal Graph Exploration

    Full text link
    A temporal graph is a graph in which the edge set can change from step to step. The temporal graph exploration problem TEXP is the problem of computing a foremost exploration schedule for a temporal graph, i.e., a temporal walk that starts at a given start node, visits all nodes of the graph, and has the smallest arrival time. In the first part of the paper, we consider only temporal graphs that are connected at each step. For such temporal graphs with nn nodes, we show that it is NP-hard to approximate TEXP with ratio O(n1ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon>0. We also provide an explicit construction of temporal graphs that require Θ(n2)\Theta(n^2) steps to be explored. We then consider TEXP under the assumption that the underlying graph (i.e. the graph that contains all edges that are present in the temporal graph in at least one step) belongs to a specific class of graphs. Among other results, we show that temporal graphs can be explored in O(n1.5k2logn)O(n^{1.5} k^2 \log n) steps if the underlying graph has treewidth kk and in O(nlog3n)O(n \log^3 n) steps if the underlying graph is a 2×n2\times n grid. In the second part of the paper, we replace the connectedness assumption by a weaker assumption and show that mm-edge temporal graphs with regularly present edges and with random edges can always be explored in O(m)O(m) steps and O(mlogn)O(m \log n) steps with high probability, respectively. We finally show that the latter result can be used to obtain a distributed algorithm for the gossiping problem.Comment: This is an extended version of an ICALP 2015 pape

    A New Perspective on Vertex Connectivity

    Get PDF
    Edge connectivity and vertex connectivity are two fundamental concepts in graph theory. Although by now there is a good understanding of the structure of graphs based on their edge connectivity, our knowledge in the case of vertex connectivity is much more limited. An essential tool in capturing edge connectivity are edge-disjoint spanning trees. The famous results of Tutte and Nash-Williams show that a graph with edge connectivity λ\lambda contains \floor{\lambda/2} edge-disjoint spanning trees. We present connected dominating set (CDS) partition and packing as tools that are analogous to edge-disjoint spanning trees and that help us to better grasp the structure of graphs based on their vertex connectivity. The objective of the CDS partition problem is to partition the nodes of a graph into as many connected dominating sets as possible. The CDS packing problem is the corresponding fractional relaxation, where CDSs are allowed to overlap as long as this is compensated by assigning appropriate weights. CDS partition and CDS packing can be viewed as the counterparts of the well-studied edge-disjoint spanning trees, focusing on vertex disjointedness rather than edge disjointness. We constructively show that every kk-vertex-connected graph with nn nodes has a CDS packing of size Ω(k/logn)\Omega(k/\log n) and a CDS partition of size Ω(k/log5n)\Omega(k/\log^5 n). We prove that the Ω(k/logn)\Omega(k/\log n) CDS packing bound is existentially optimal. Using CDS packing, we show that if vertices of a kk-vertex-connected graph are independently sampled with probability pp, then the graph induced by the sampled vertices has vertex connectivity Ω~(kp2)\tilde{\Omega}(kp^2). Moreover, using our Ω(k/logn)\Omega(k/\log n) CDS packing, we get a store-and-forward broadcast algorithm with optimal throughput in the networking model where in each round, each node can send one bounded-size message to all its neighbors
    corecore