11 research outputs found

    Placement and routing for cross-referencing digital microfluidic biochips.

    Get PDF
    Xiao, Zigang."October 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (leaves 62-66).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.viChapter 1 --- Introduction --- p.1Chapter 1.1 --- Microfluidic Technology --- p.2Chapter 1.1.1 --- Continuous Flow Microfluidic System --- p.2Chapter 1.1.2 --- Digital Microfluidic System --- p.2Chapter 1.2 --- Pin-Constrained Biochips --- p.4Chapter 1.2.1 --- Droplet-Trace-Based Array Partitioning Method --- p.5Chapter 1.2.2 --- Broadcast-addressing Method --- p.5Chapter 1.2.3 --- Cross-Referencing Method --- p.6Chapter 1.2.3.1 --- Electrode Interference in Cross-Referencing Biochips --- p.7Chapter 1.3 --- Computer-Aided Design Techniques for Biochip --- p.8Chapter 1.4 --- Placement Problem in Biochips --- p.8Chapter 1.5 --- Droplet Routing Problem in Cross-Referencing Biochips --- p.11Chapter 1.6 --- Our Contributions --- p.14Chapter 1.7 --- Thesis Organization --- p.15Chapter 2 --- Literature Review --- p.16Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Previous Works on Placement --- p.17Chapter 2.2.1 --- Basic Simulated Annealing --- p.17Chapter 2.2.2 --- Unified Synthesis Approach --- p.18Chapter 2.2.3 --- Droplet-Routing-Aware Unified Synthesis Approach --- p.19Chapter 2.2.4 --- Simulated Annealing Using T-tree Representation --- p.20Chapter 2.3 --- Previous Works on Routing --- p.21Chapter 2.3.1 --- Direct-Addressing Droplet Routing --- p.22Chapter 2.3.1.1 --- A* Search Method --- p.22Chapter 2.3.1.2 --- Open Shortest Path First Method --- p.23Chapter 2.3.1.3 --- A Two Phase Algorithm --- p.24Chapter 2.3.1.4 --- Network-Flow Based Method --- p.25Chapter 2.3.1.5 --- Bypassibility and Concession Method --- p.26Chapter 2.3.2 --- Cross-Referencing Droplet Routing --- p.28Chapter 2.3.2.1 --- Graph Coloring Method --- p.28Chapter 2.3.2.2 --- Clique Partitioning Method --- p.30Chapter 2.3.2.3 --- Progressive-ILP Method --- p.31Chapter 2.4 --- Conclusion --- p.32Chapter 3 --- CrossRouter for Cross-Referencing Biochip --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- Problem Formulation --- p.34Chapter 3.3 --- Overview of Our Method --- p.35Chapter 3.4 --- Net Order Computation --- p.35Chapter 3.5 --- Propagation Stage --- p.36Chapter 3.5.1 --- Fluidic Constraint Check --- p.38Chapter 3.5.2 --- Electrode Constraint Check --- p.38Chapter 3.5.3 --- Handling 3-pin net --- p.44Chapter 3.5.4 --- Waste Reservoir --- p.45Chapter 3.6 --- Backtracking Stage --- p.45Chapter 3.7 --- Rip-up and Re-route Nets --- p.45Chapter 3.8 --- Experimental Results --- p.46Chapter 3.9 --- Conclusion --- p.47Chapter 4 --- Placement in Cross-Referencing Biochip --- p.49Chapter 4.1 --- Introduction --- p.49Chapter 4.2 --- Problem Formulation --- p.50Chapter 4.3 --- Overview of the method --- p.50Chapter 4.4 --- Dispenser and Reservoir Location Generation --- p.51Chapter 4.5 --- Solving Placement Problem Using ILP --- p.51Chapter 4.5.1 --- Constraints --- p.53Chapter 4.5.1.1 --- Validity of modules --- p.53Chapter 4.5.1.2 --- Non-overlapping and separation of Modules --- p.53Chapter 4.5.1.3 --- Droplet-Routing length constraint --- p.54Chapter 4.5.1.4 --- Optical detector resource constraint --- p.55Chapter 4.5.2 --- Objective --- p.55Chapter 4.5.3 --- Problem Partition --- p.56Chapter 4.6 --- Pin Assignment --- p.56Chapter 4.7 --- Experimental Results --- p.57Chapter 4.8 --- Conclusion --- p.59Chapter 5 --- Conclusion --- p.60Bibliography --- p.6

    Droplet routing for digital microfluidic biochips based on microelectrode dot array architecture

    Get PDF
    A digital microfluidic biochip (DMFB) is a device that digitizes fluidic samples into tiny droplets and operates chemical processes on a single chip. Movement control of droplets can be realized by using electrowetting-on-dielectric (EWOD) technology. DMFBs have high configurability, high sensitivity, low cost and reduced human error as well as a promising future in the applications of point-of-care medical diagnostic, and DNA sequencing. As the demands of scalability, configurability and portability increase, a new DMFB architecture called Microelectrode Dot Array (MEDA) has been introduced recently to allow configurable electrodes shape and more precise control of droplets. The objective of this work is to investigate a routing algorithm which can not only handle the routing problem for traditional DMFBs, but also be able to route different sizes of droplets and incorporate diagonal movements for MEDA. The proposed droplet routing algorithm is based on 3D-A* search algorithm. The simulation results show that the proposed algorithm can reduce the maximum latest arrival time, average latest arrival time and total number of used cells. By enabling channel-based routing in MEDA, the equivalent total number of used cells can be significantly reduced. Compared to all existing algorithms, the proposed algorithm can achieve so far the least average latest arrival time

    Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

    Get PDF

    Design and Optimization Methods for Pin-Limited and Cyberphysical Digital Microfluidic Biochips

    Get PDF
    <p>Microfluidic biochips have now come of age, with applications to biomolecular recognition for high-throughput DNA sequencing, immunoassays, and point-of-care clinical diagnostics. In particular, digital microfluidic biochips, which use electrowetting-on-dielectric to manipulate discrete droplets (or "packets of biochemical payload") of picoliter volumes under clock control, are especially promising. The potential applications of biochips include real-time analysis for biochemical reagents, clinical diagnostics, flash chemistry, and on-chip DNA sequencing. The ease of reconfigurability and software-based control in digital microfluidics has motivated research on various aspects of automated chip design and optimization.</p><p>This thesis research is focused on facilitating advances in on-chip bioassays, enhancing the automated use of digital microfluidic biochips, and developing an "intelligent" microfluidic system that has the capability of making on-line re-synthesis while a bioassay is being executed. This thesis includes the concept of a "cyberphysical microfluidic biochip" based on the digital microfluidics hardware platform and on-chip sensing technique. In such a biochip, the control software, on-chip sensing, and the microfluidic operations are tightly coupled. The status of the droplets is dynamically monitored by on-chip sensors. If an error is detected, the control software performs dynamic re-synthesis procedure and error recovery.</p><p>In order to minimize the size and cost of the system, a hardware-assisted error-recovery method, which relies on an error dictionary for rapid error recovery, is also presented. The error-recovery procedure is controlled by a finite-state-machine implemented on a field-programmable gate array (FPGA) instead of a software running on a separate computer. Each state of the FSM represents a possible error that may occur on the biochip; for each of these errors, the corresponding sequence of error-recovery signals is stored inside the memory of the FPGA before the bioassay is conducted. When an error occurs, the FSM transitions from one state to another, and the corresponding control signals are updated. Therefore, by using inexpensive FPGA, a portable cyberphysical system can be implemented.</p><p>In addition to errors in fluid-handling operations, bioassay outcomes can also be erroneous due the uncertainty in the completion time for fluidic operations. Due to the inherent randomness of biochemical reactions, the time required to complete each step of the bioassay is a random variable. To address this issue, a new "operation-interdependence-aware" synthesis algorithm is proposed in this thesis. The start and stop time of each operation are dynamically determined based on feedback from the on-chip sensors. Unlike previous synthesis algorithms that execute bioassays based on pre-determined start and end times of each operation, the proposed method facilitates "self-adaptive" bioassays on cyberphysical microfluidic biochips.</p><p>Another design problem addressed in this thesis is the development of a layout-design algorithm that can minimize the interference between devices on a biochip. A probabilistic model for the polymerase chain reaction (PCR) has been developed; based on the model, the control software can make on-line decisions regarding the number of thermal cycles that must be performed during PCR. Therefore, PCR can be controlled more precisely using cyberphysical integration.</p><p>To reduce the fabrication cost of biochips, yet maintain application flexibility, the concept of a "general-purpose pin-limited biochip" is proposed. Using a graph model for pin-assignment, we develop the theoretical basis and a heuristic algorithm to generate optimized pin-assignment configurations. The associated scheduling algorithm for on-chip biochemistry synthesis has also been developed. Based on the theoretical framework, a complete design flow for pin-limited cyberphysical microfluidic biochips is presented.</p><p>In summary, this thesis research has led to an algorithmic infrastructure and optimization tools for cyberphysical system design and technology demonstrations. The results of this thesis research are expected to enable the hardware/software co-design of a new class of digital microfluidic biochips with tight coupling between microfluidics, sensors, and control software.</p>Dissertatio

    A housekeeping prognostic health management framework for microfluidic systems

    Get PDF
    Micro-Electro-Mechanical Systems (MEMS) and Microfluidics are becoming popular solutions for sensing, diagnostics and control applications. Reliability and validation of function is of increasing importance in the majority of these applications. On-line testing strategies for these devices have the potential to provide real-time condition monitoring information. It is shown that this information can be used to diagnose and prognose the health of the device. This information can also be used to provide an early failure warning system by predicting the remaining useful life. Diagnostic and prognostic outcomes can also be leveraged to improve the reliability, dependability and availability of these devices. This work has delivered a methodology for a “lightweight” prognostics solution for a microfluidic device based on real-time diagnostics. An oscillation based test methodology is used to extract diagnostic information that is processed using a Linear Discriminant Analysis based classifier. This enables the identification of current health based on pre-defined health levels. As the deteriorating device is periodically classified, the rate at which the device degrades is used to predict the devices remaining useful life

    Cost Factor Focused Scheduling and Sequencing: A Neoteric Literature Review

    Get PDF
    The hastily emergent concern from researchers in the application of scheduling and sequencing has urged the necessity for analysis of the latest research growth to construct a new outline. This paper focuses on the literature on cost minimization as a primary aim in scheduling problems represented with less significance as a whole in the past literature reviews. The purpose of this paper is to have an intensive study to clarify the development of cost-based scheduling and sequencing (CSS) by reviewing the work published over several parameters for improving the understanding in this field. Various parameters, such as scheduling models, algorithms, industries, journals, publishers, publication year, authors, countries, constraints, objectives, uncertainties, computational time, and programming languages and optimization software packages are considered. In this research, the literature review of CSS is done for thirteen years (2010-2022). Although CSS research originated in manufacturing, it has been observed that CSS research publications also addressed case studies based on health, transportation, railway, airport, steel, textile, education, ship, petrochemical, inspection, and construction projects. A detailed evaluation of the literature is followed by significant information found in the study, literature analysis, gaps identification, constraints of work done, and opportunities in future research for the researchers and experts from the industries in CSS

    Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips

    No full text

    Optoelectronics – Devices and Applications

    Get PDF
    Optoelectronics - Devices and Applications is the second part of an edited anthology on the multifaced areas of optoelectronics by a selected group of authors including promising novices to experts in the field. Photonics and optoelectronics are making an impact multiple times as the semiconductor revolution made on the quality of our life. In telecommunication, entertainment devices, computational techniques, clean energy harvesting, medical instrumentation, materials and device characterization and scores of other areas of R&D the science of optics and electronics get coupled by fine technology advances to make incredibly large strides. The technology of light has advanced to a stage where disciplines sans boundaries are finding it indispensable. New design concepts are fast emerging and being tested and applications developed in an unimaginable pace and speed. The wide spectrum of topics related to optoelectronics and photonics presented here is sure to make this collection of essays extremely useful to students and other stake holders in the field such as researchers and device designers
    corecore