18,004 research outputs found

    Capacity Bounds for Broadcast Channels with Confidential Messages

    Full text link
    In this paper, we study capacity bounds for discrete memoryless broadcast channels with confidential messages. Two private messages as well as a common message are transmitted; the common message is to be decoded by both receivers, while each private message is only for its intended receiver. In addition, each private message is to be kept secret from the unintended receiver where secrecy is measured by equivocation. We propose both inner and outer bounds to the rate equivocation region for broadcast channels with confidential messages. The proposed inner bound generalizes Csisz\'{a}r and K\"{o}rner's rate equivocation region for broadcast channels with a single confidential message, Liu {\em et al}'s achievable rate region for broadcast channels with perfect secrecy, Marton's and Gel'fand and Pinsker's achievable rate region for general broadcast channels. Our proposed outer bounds, together with the inner bound, helps establish the rate equivocation region of several classes of discrete memoryless broadcast channels with confidential messages, including less noisy, deterministic, and semi-deterministic channels. Furthermore, specializing to the general broadcast channel by removing the confidentiality constraint, our proposed outer bounds reduce to new capacity outer bounds for the discrete memory broadcast channel.Comment: 27 pages, 1 figure, submitted to IEEE Transaction on Information Theor

    MIMO Gaussian Broadcast Channels with Confidential and Common Messages

    Full text link
    This paper considers the problem of secret communication over a two-receiver multiple-input multiple-output (MIMO) Gaussian broadcast channel. The transmitter has two independent, confidential messages and a common message. Each of the confidential messages is intended for one of the receivers but needs to be kept perfectly secret from the other, and the common message is intended for both receivers. It is shown that a natural scheme that combines secret dirty-paper coding with Gaussian superposition coding achieves the secrecy capacity region. To prove this result, a channel-enhancement approach and an extremal entropy inequality of Weingarten et al. are used.Comment: Submitted to 2010 IEEE International Symposium on Information Theory, Austin, Texa

    Secure Multiplex Coding with Dependent and Non-Uniform Multiple Messages

    Full text link
    The secure multiplex coding (SMC) is a technique to remove rate loss in the coding for wire-tap channels and broadcast channels with confidential messages caused by the inclusion of random bits into transmitted signals. SMC replaces the random bits by other meaningful secret messages, and a collection of secret messages serves as the random bits to hide the rest of messages. In the previous researches, multiple secret messages were assumed to have independent and uniform distributions, which is difficult to be ensured in practice. We remove this restrictive assumption by a generalization of the channel resolvability technique. We also give practical construction techniques for SMC by using an arbitrary given error-correcting code as an ingredient, and channel-universal coding of SMC. By using the same principle as the channel-universal SMC, we give coding for the broadcast channel with confidential messages universal to both channel and source distributions.Comment: We made several changes to improve the presentatio

    New Results on Multiple-Input Multiple-Output Broadcast Channels with Confidential Messages

    Full text link
    This paper presents two new results on multiple-input multiple-output (MIMO) Gaussian broadcast channels with confidential messages. First, the problem of the MIMO Gaussian wiretap channel is revisited. A matrix characterization of the capacity-equivocation region is provided, which extends the previous result on the secrecy capacity of the MIMO Gaussian wiretap channel to the general, possibly imperfect secrecy setting. Next, the problem of MIMO Gaussian broadcast channels with two receivers and three independent messages: a common message intended for both receivers, and two confidential messages each intended for one of the receivers but needing to be kept asymptotically perfectly secret from the other, is considered. A precise characterization of the capacity region is provided, generalizing the previous results which considered only two out of three possible messages.Comment: Submitted to the IEEE Transactions on Information Theory, 11 pages, 5 figure

    On the Compound MIMO Broadcast Channels with Confidential Messages

    Full text link
    We study the compound multi-input multi-output (MIMO) broadcast channel with confidential messages (BCC), where one transmitter sends a common message to two receivers and two confidential messages respectively to each receiver. The channel state may take one of a finite set of states, and the transmitter knows the state set but does not know the realization of the state. We study achievable rates with perfect secrecy in the high SNR regime by characterizing an achievable secrecy degree of freedom (s.d.o.f.) region for two models, the Gaussian MIMO-BCC and the ergodic fading multi-input single-output (MISO)-BCC without a common message. We show that by exploiting an additional temporal dimension due to state variation in the ergodic fading model, the achievable s.d.o.f. region can be significantly improved compared to the Gaussian model with a constant state, although at the price of a larger delay.Comment: To appear in Proc. IEEE Symposium on Information Theory (ISIT 2009) June 28 - July 3, 2009, Seoul, Kore
    corecore