562 research outputs found

    DSI: A Fully Distributed Spatial Index for Wireless Data Broadcast

    Get PDF

    Data centric storage framework for an intelligent wireless sensor network

    Get PDF
    In the last decade research into Wireless Sensor Networks (WSN) has triggered extensive growth in flexible and previously difficult to achieve scientific activities carried out in the most demanding and often remote areas of the world. This success has provoked research into new WSN related challenges including finding techniques for data management, analysis, and how to gather information from large, diverse, distributed and heterogeneous data sets. The shift in focus to research into a scalable, accessible and sustainable intelligent sensor networks reflects the ongoing improvements made in the design, development, deployment and operation of WSNs. However, one of the key and prime pre-requisites of an intelligent network is to have the ability of in-network data storage and processing which is referred to as Data Centric Storage (DCS). This research project has successfully proposed, developed and implemented a comprehensive DCS framework for WSN. Range query mechanism, similarity search, load balancing, multi-dimensional data search, as well as limited and constrained resources have driven the research focus. The architecture of the deployed network, referred to as Disk Based Data Centric Storage (DBDCS), was inspired by the magnetic disk storage platter consisting of tracks and sectors. The core contributions made in this research can be summarized as: a) An optimally synchronized routing algorithm, referred to Sector Based Distance (SBD) routing for the DBDCS architecture; b) DCS Metric based Similarity Searching (DCSMSS) with the realization of three exemplar queries – Range query, K-nearest neighbor query (KNN) and Skyline query; and c) A Decentralized Distributed Erasure Coding (DDEC) algorithm that achieves a similar level of reliability with less redundancy. SBD achieves high power efficiency whilst reducing updates and query traffic, end-to-end delay, and collisions. In order to guarantee reliability and minimizing end-to-end latency, a simple Grid Coloring Algorithm (GCA) is used to derive the time division multiple access (TDMA) schedules. The GCA uses a slot reuse concept to minimize the TDMA frame length. A performance evaluation was conducted with simulation results showing that SBD achieves a throughput enhancement by a factor of two, extension of network life time by 30%, and reduced end-to-end latency. DCSMSS takes advantage of a vector distance index, called iDistance, transforming the issue of similarity searching into the problem of an interval search in one dimension. DCSMSS balances the load across the network and provides efficient similarity searching in terms of three types of queries – range query, k-query and skyline query. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. DDEC encoded the acquired information into n fragments and disseminated across n nodes inside a sector so that the original source packets can be recovered from any k surviving nodes. A lost fragment can also be regenerated from any d helper nodes. DDEC was evaluated against 3-Way Replication using different performance matrices. The results have highlighted that the use of erasure encoding in network storage can provide the desired level of data availability at a smaller memory overhead when compared to replication

    An elementary proposition on the dynamic routing problem in wireless networks of sensors

    Get PDF
    The routing problem (finding an optimal route from one point in a computer network to another) is surrounded by impossibility results. These results are usually expressed as lower and upper bounds on the set of nodes (or the set of links) of a network and represent the complexity of a solution to the routing problem (a routing function). The routing problem dealt with here, in particular, is a dynamic one (it accounts for network dynamics) and concerns wireless networks of sensors. Sensors form wireless links of limited capacity and time-variable quality to route messages amongst themselves. It is desired that sensors self-organize ad hoc in order to successfully carry out a routing task, e.g. provide daily soil erosion reports for a monitored watershed, or provide immediate indications of an imminent volcanic eruption, in spite of network dynamics. Link dynamics are the first barrier to finding an optimal route between a node x and a node y in a sensor network. The uncertainty of the outcome (the best next hop) of a routing function lies partially with the quality fluctuations of wireless links. Take, for example, a static network. It is known that, given the set of nodes and their link weights (or costs), a node can compute optimal routes by running, say, Dijkstra's algorithm. Link dynamics however suggest that costs are not static. Hence, sensors need a metric (a measurable quantity of uncertainty) to monitor for fluctuations, either improvements or degradations of quality or load; when a fluctuation is sufficiently large (say, by Delta), sensors ought to update their costs and seek another route. Therein lies the other fundamental barrier to find an optimal route - complexity. A crude argument would suggest that sensors (and their links) have an upper bound on the number of messages they can transmit, receive and store due to resource constraints. Such messages can be application traffic, in which case it is desirable, or control traffic, in which case it should be kept minimal. The first type of traffic is demand, and a user should provision for it accordingly. The second type of traffic is overhead, and it is necessary if a routing system (or scheme) is to ensure its fidelity to the application requirements (policy). It is possible for a routing scheme to approximate optimal routes (by Delta) by reducing its message and/or memory complexity. The common denominator of the routing problem and the desire to minimize overhead while approximating optimal routes is Delta, the deviation (or stretch) of a computed route from an optimal one, as computed by a node that has instantaneous knowledge of the set of all nodes and their interaction costs (an oracle). This dissertation deals with both problems in unison. To do so, it needs to translate the policy space (the user objectives) into a metric space (routing objectives). It does so by means of a cost function that normalizes metrics into a number of hops. Then it proceeds to devise, design, and implement a scheme that computes minimum-hop-count routes with manageable complexity. The theory presented is founded on (well-ordered) sets with respect to an elementary proposition, that a route from a source x to a destination y can be computed either by y sending an advertisement to the set of all nodes, or by x sending a query to the set of all nodes; henceforth the proactive method (of y) and the reactive method (of x), respectively. The debate between proactive and reactive routing protocols appears in many instances of the routing problem (e.g. routing in mobile networks, routing in delay-tolerant networks, compact routing), and it is focussed on whether nodes should know a priori all routes and then select the best one (with the proactive method), or each node could simply search for a (hopefully best) route on demand (with the reactive method). The proactive method is stateful, as it requires the entire metric space - the set of nodes and their interaction costs - in memory (in a routing table). The routes computed by the proactive method are optimal and the lower and upper bounds of proactive schemes match those of an oracle. Any attempt to reduce the proactive overhead, e.g. by introducing hierarchies, will result in sub-optimal routes (of known stretch). The reactive method is stateless, as it requires no information whatsoever to compute a route. Reactive schemes - at least as they are presently understood - compute sub-optimal routes (and thus far, of unknown stretch). This dissertation attempts to answer the following question: "what is the least amount of state required to compute an optimal route from a source to a destination?" A hybrid routing scheme is used to investigate this question, one that uses the proactive method to compute routes to near destinations and the reactive method for distant destinations. It is shown that there are cases where hybrid schemes can converge to optimal routes, despite possessing incomplete routing state, and that the necessary and sufficient condition to compute optimal routes with local state alone is related neither to the size nor the density of a network; it is rather the circumference (the size of the largest cycle) of a network that matters. Counterexamples, where local state is insufficient, are discussed to derive the worst-case stretch. The theory is augmented with simulation results and a small experimental testbed to motivate the discussion on how policy space (user requirements) can translate into metric spaces and how different metrics affect performance. On the debate between proactive and reactive protocols, it is shown that the two classes are equivalent. The dissertation concludes with a discussion on the applicability of its results and poses some open problems

    The improvements of power management for clustered type large scope wireless sensor networks2010

    Full text link
    Fuente AragĂłn, PDL. (2010). The improvements of power management for clustered type large scope wireless sensor networks2010. http://hdl.handle.net/10251/10244.Archivo delegad

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Sequencing geographical data for efficient query processing on air in mobile computing.

    Get PDF
    Three cost models are derived to measure Data Broadcast Wait (DBW), Data Access Time in the multiplexing scheme (ATDataMul) where both data and indices are broadcast in the same channel, and Data Access Time in the separate channel scheme (ATDataSep) where data and indices are broadcast in two separate channels. Hypergraph representations are used to represent the spatial relationships of both point data and graph data. The broadcast data placement problem is then converted to the graph layout problem. A framework for classifying ordering heuristics for different types of geographical data is presented. A low-polynomial cost approximation graph layout method is used to solve the DBW minimization problem. Based on the proven monotonic relationship between ATData Sep and DBW, the same approximation method is also used for AT DataSep optimization. A novel method is developed to optimize ATDataMul. Experiments using both synthetic and real data are conducted to evaluate the performance of the ordering heuristics and optimization methods. The results show that R-Tree traversal ordering heuristic in conjunction with the optimization methods is effective for sequencing point data for spatial range query processing, while graph partition tree traversal ordering heuristic in conjunction with the optimization methods is suitable for sequencing graph data for network path query processing over air.Geographical data broadcasting is suitable for many large scale dissemination-based applications due to its independence of number of users, and thus it can serve as an important part of intelligent information infrastructures for modern cities. In broadcast systems, query response time is greatly affected by the order in which data items are being broadcast. However, existing broadcast ordering techniques are not suitable for geographical data because of the multi-dimension and rich semantics of geographical data. This research develops cost models and methods for placing geographical data items in a broadcast channel based on their spatial semantics to reduce response time and energy consumption for processing spatial queries on point data and graph data

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)

    Energy-Efficient Self-Organization Protocols for Sensor Networks

    Get PDF
    A Wireless Sensor Network (WSN, for short) consists of a large number of very small sensor devices deployed in an area of interest for gathering and delivery information. The fundamental goal of a WSN is to produce, over an extended period of time, global information from local data obtained by individual sensors. The WSN technology will have a significant impact on a wide array of applications on the efficiency of many civilian and military applications including combat field surveillance, intrusion detection, disaster management among many others. The basic management problem in the WSN is to balance the utility of the activity in the network against the cost incurred by the network resources to perform this activity. Since the sensors are battery powered and it is impossible to change or recharge batteries after the sensors are deployed, promoting system longevity becomes one of the most important design goals instead of QoS provisioning and bandwidth efficiency. On the other hand the self-organization ability is essential for the WSN due to the fact that the sensors are randomly deployed and they work unattended. We developed a self-organization protocol, which creates a multi-hop communication infrastructure capable of utilizing the limited resources of sensors in an adaptive and efficient way. The resulting general-purpose infrastructure is robust, easy to maintain and adapts well to various application needs. Important by-products of our infrastructure include: (1) Energy efficiency: in order to save energy and to extend the longevity of the WSN sensors, which are in sleep mode most of the time. (2) Adaptivity: the infrastructure is adaptive to network size, network topology, network density and application requirement. (3) Robustness: the degree to which the infrastructure is robust and resilient. Analytical results and simulation confirmed that our self-organization protocol has a number of desirable properties and compared favorably with the leading protocols in the literature
    • …
    corecore