14,028 research outputs found

    The Approximate Capacity of the Gaussian N-Relay Diamond Network

    Full text link
    We consider the Gaussian "diamond" or parallel relay network, in which a source node transmits a message to a destination node with the help of N relays. Even for the symmetric setting, in which the channel gains to the relays are identical and the channel gains from the relays are identical, the capacity of this channel is unknown in general. The best known capacity approximation is up to an additive gap of order N bits and up to a multiplicative gap of order N^2, with both gaps independent of the channel gains. In this paper, we approximate the capacity of the symmetric Gaussian N-relay diamond network up to an additive gap of 1.8 bits and up to a multiplicative gap of a factor 14. Both gaps are independent of the channel gains and, unlike the best previously known result, are also independent of the number of relays N in the network. Achievability is based on bursty amplify-and-forward, showing that this simple scheme is uniformly approximately optimal, both in the low-rate as well as in the high-rate regimes. The upper bound on capacity is based on a careful evaluation of the cut-set bound. We also present approximation results for the asymmetric Gaussian N-relay diamond network. In particular, we show that bursty amplify-and-forward combined with optimal relay selection achieves a rate within a factor O(log^4(N)) of capacity with pre-constant in the order notation independent of the channel gains.Comment: 23 pages, to appear in IEEE Transactions on Information Theor

    Wireless Network Information Flow: A Deterministic Approach

    Full text link
    In a wireless network with a single source and a single destination and an arbitrary number of relay nodes, what is the maximum rate of information flow achievable? We make progress on this long standing problem through a two-step approach. First we propose a deterministic channel model which captures the key wireless properties of signal strength, broadcast and superposition. We obtain an exact characterization of the capacity of a network with nodes connected by such deterministic channels. This result is a natural generalization of the celebrated max-flow min-cut theorem for wired networks. Second, we use the insights obtained from the deterministic analysis to design a new quantize-map-and-forward scheme for Gaussian networks. In this scheme, each relay quantizes the received signal at the noise level and maps it to a random Gaussian codeword for forwarding, and the final destination decodes the source's message based on the received signal. We show that, in contrast to existing schemes, this scheme can achieve the cut-set upper bound to within a gap which is independent of the channel parameters. In the case of the relay channel with a single relay as well as the two-relay Gaussian diamond network, the gap is 1 bit/s/Hz. Moreover, the scheme is universal in the sense that the relays need no knowledge of the values of the channel parameters to (approximately) achieve the rate supportable by the network. We also present extensions of the results to multicast networks, half-duplex networks and ergodic networks.Comment: To appear in IEEE transactions on Information Theory, Vol 57, No 4, April 201

    Secure Transmission in Amplify-and-Forward Diamond Networks with a Single Eavesdropper

    Full text link
    Unicast communication over a network of MM-parallel relays in the presence of an eavesdropper is considered. The relay nodes, operating under individual power constraints, amplify and forward the signals received at their inputs. The problem of the maximum secrecy rate achievable with AF relaying is addressed. Previous work on this problem provides iterative algorithms based on semidefinite relaxation. However, those algorithms result in suboptimal performance without any performance and convergence guarantees. We address this problem for three specific network models, with real-valued channel gains. We propose a novel transformation that leads to convex optimization problems. Our analysis leads to (i)a polynomial-time algorithm to compute the optimal secure AF rate for two of the models and (ii) a closed-form expression for the optimal secure rate for the other.Comment: 12pt font, 18 pages, 1 figure, conferenc

    A Unified Approach for Network Information Theory

    Full text link
    In this paper, we take a unified approach for network information theory and prove a coding theorem, which can recover most of the achievability results in network information theory that are based on random coding. The final single-letter expression has a very simple form, which was made possible by many novel elements such as a unified framework that represents various network problems in a simple and unified way, a unified coding strategy that consists of a few basic ingredients but can emulate many known coding techniques if needed, and new proof techniques beyond the use of standard covering and packing lemmas. For example, in our framework, sources, channels, states and side information are treated in a unified way and various constraints such as cost and distortion constraints are unified as a single joint-typicality constraint. Our theorem can be useful in proving many new achievability results easily and in some cases gives simpler rate expressions than those obtained using conventional approaches. Furthermore, our unified coding can strictly outperform existing schemes. For example, we obtain a generalized decode-compress-amplify-and-forward bound as a simple corollary of our main theorem and show it strictly outperforms previously known coding schemes. Using our unified framework, we formally define and characterize three types of network duality based on channel input-output reversal and network flow reversal combined with packing-covering duality.Comment: 52 pages, 7 figures, submitted to IEEE Transactions on Information theory, a shorter version will appear in Proc. IEEE ISIT 201
    • …
    corecore