133 research outputs found

    WIRELESS ANTENNA MULTIPLEXING USING TUNABLE ANTENNA FOR SPACE APPLICATIONS

    Get PDF
    Recent development in communication technologies shifts the communication paradigm from point to point to multi-user wireless systems. These developments eased the use of mobile telephone, satellite services, 5G cellular, smart application, and the Internet of Things. The proliferation of mobile devices has necessitated an elaborate mechanism to serve multiple users over a shared communication medium, and a multiplexing approach is introduced to serve this purpose. Multiplexing refers to a method that aims at combining multiple signals into one signal such that each user would be able to extract its desired data upon receiving the multiplexed signal. This spectrum sharing allows wireless operators to maximize the use of their spectrum to accommodate a large number of users over fewer channels. In Space applications, where sensors like temperature, attitude, IR, Magnetic, etc. send information using antennas operate at a different frequency, there is a need to collect all or some of these data using a single device. A wideband antenna requires a filtering process in order to remove unwanted signals that lead to a complex circuit design. Furthermore, the use of multiple antennas ends up with a larger size and additional complexity. Therefore, the tunable antenna is an excellent candidate which provides a perfect solution for such scenarios. A tunable antenna whose frequency characteristics shifted by applying tuning action can be used to operate as a multiplexing device that can collect signals from different surrounding antennas; each operates at a fixed frequency. A system architecture for wireless multiplexing using a tunable antenna is proposed in this project. An electronically tunable antenna using varactor diode as a tuning element is used as the multiplexing device that can collect signals from different surrounding antennas. The system consists of an RF front end and a control circuit/system for wireless multiplexing. The RF front end consists of a tunable antenna, tunable phase shifter, tunable bandpass filter, low noise amplifier, mixer, voltage-controlled oscillator, and an intermediate frequency filter. The control unit comprises a microcontroller, DAC, CMOS oscillator, power module, and a USB interface for communication with custom-built software installed on a PC. The device has functions for control, digital signal processing, and de-multiplexing. The device is fed with an input multiplexed signal, and the de-multiplexed output signals are extracted and displayed on the graphical user interface of the software. Due to the reconfigurability and programmability of the device, it presents a flexible, cost-effective solution for a variety of real-world applications

    The Study of Reconfigurable Antennas and Associated Circuitry

    Get PDF
    This research focuses on the design of pattern reconfigurable antennas and the associated circuitry. The proposed pattern reconfigurable antenna designs benefit from advantages such as maximum pattern diversity and optimum switching circuits to realise 5G reconfigurable antennas. Whereas MIMO based solutions can provide increased channel capacity, they demand high computational capability and power consumption due to multiple channel processing. This prevents their use in many applications most notably in the Internet of Things where power consumption is of key importance. A switched-beam diversity allows an energy-efficient solution improving the link budget even for small low-cost battery operated IoT/sensor network applications. The main focus of the antenna reconfiguration in this work is for switched-beam diversity. The fundamental switching elements are discussed including basic PIN diode circuits. Techniques to switch the antenna element in the feed or shorting the antenna element to the ground plane are presented. A back-to-back microstrip patch antenna with two hemispherical switchable patterns is proposed. The patch elements on a common ground plane, are switched with a single-pole double-throw PIN diode circuit. Switching the feed selects either of two identical oppositely oriented radiation patterns for maximum diversity in one plane. The identical design of the antenna elements provides similar performance control of frequency and radiation pattern in different states. This antenna provides a simple solution to cross-layer PIN diode circuit designs. A mirrored structure study provides an understanding of performance control for different switching states. A printed inverted-F antenna is presented for monopole reconfigurable antenna design. The proposed low-profile antenna consists of one main radiator and one parasitic element. By shorting the parasitic element to the ground plane using only one PIN diode, the antenna is capable of switching both the pattern and polarisation across the full bandwidth. The switched orthogonal pattern provides the maximum spatial pattern diversity and is realised using a simple structure. Then, a dual-stub coplanar Vivaldi antenna with a parasitic element is presented for the 5G mm-Wave band. The use of a dual-stub coupled between the parasitic element and two tapered slots is researched. The parasitic element shape and size is optimised to increase the realised gain. A bandpass coupled line filter is used for frequency selective features. The use of slits on the outer edge of the ground plane provides a greater maximum gain. This integrated filtenna offers lower insertion loss than the commercial DC blocks. The UWB antenna with an integrated filter can be used for harmonic suppression. The influence of the integrated filter circuit close to the antenna geometry informs the design of PIN diode circuit switching and power supply in the 5G band. Based on the filter design in the mm-Wave band, a method of designing a feasible DC power supply for the PIN diode in the mm-Wave band is studied. A printed Yagi-Uda antenna array is integrated with switching circuitry to realise a switched 180° hemispheres radiation pattern. The antenna realises a maximum diversity in one plane. The study offers the possibility to use PIN diodes in the mm-Wave band for reconfigurable antenna designs. For the presented antennas, key geometric parameters are discussed for improved understanding of the trade-offs in radiation pattern/beamwidth and gain control for reconfigurable antenna applications

    Polarization diversity and adaptive beamsteering for 5G reflectarrays: a review

    Get PDF
    The growing demands of advanced future communication technologies require investigating the possible enhancement in the current features of a reflectarray antenna. Its design and experimental features need a thorough investigation before a plausible transition towards millimeter wave frequencies. This paper provides a detailed review covering various fundamental and advanced design tactics for polarization diversity and beamsteering in the reflectarray antenna. The diversity in the polarization has been discussed for linear and circular polarized designs in reflectarrays. The importance of electronically tunable materials and different lumped components for adaptive beamsteering in reflectarrays has also been highlighted. Each design has been critically analyzed and possibilities of its compatibility with future 5G systems have been provided

    Microwave Antennas for Energy Harvesting Applications

    Get PDF
    In the last few years, the demand for power has increased; therefore, the need for alternate energy sources has become essential. Sources of fossil fuels are finite, are costly, and causes environmental hazard. Sustainable, environmentally benign energy can be derived from nuclear fission or captured from ambient sources. Large-scale ambient energy is widely available and large-scale technologies are being developed to efficiently capture it. At the other end of the scale, there are small amounts of wasted energy that could be useful if captured. There are various types of external energy sources such as solar, thermal, wind, and RF energy. Energy has been harvested for different purposes in the last few recent years. Energy harvesting from inexhaustible sources with no adverse environmental effect can provide unlimited energy for harvesting in a way of powering an embedded system from the environment. It could be RF energy harvesting by using antennas that can be held on the car glass or building, or in any places. The abundant RF energy is harvested from surrounding sources. This chapter focuses on RF energy harvesting in which the abundant RF energy from surrounding sources, such as nearby mobile phones, wireless LANs (WLANs), Wi-Fi, FM/AM radio signals, and broadcast television signals or DTV, is captured by a receiving antenna and rectified into a usable DC voltage. A practical approach for RF energy harvesting design and management of the harvested and available energy for wireless sensor networks is to improve the energy efficiency and large accepted antenna gain. The emerging self-powered systems challenge and dictate the direction of research in energy harvesting (EH). There are a lot of applications of energy harvesting such as wireless weather stations, car tire pressure monitors, implantable medical devices, traffic alert signs, and mars rover. A lot of researches are done to create several designs of rectenna (antenna and rectifier) that meet various objectives for use in RF energy harvesting, whatever opaque or transparent. However, most of the designed antennas are opaque and prevent the sunlight to pass through, so it is hard to put it on the car glass or window. Thus, there should be a design for transparent antenna that allows the sunlight to pass through. Among various antennas, microstrip patch antennas are widely used because they are low profile, are lightweight, and have planar structure. Microstrip patch-structured rectennas are evaluated and compared with an emphasis on the various methods adopted to obtain a rectenna with harmonic rejection functionality, frequency, and polarization selectivity. Multiple frequency bands are tapped for energy harvesting, and this aspect of the implementation is one of the main focus points. The bands targeted for harvesting in this chapter will be those that are the most readily available to the general population. These include Wi-Fi hotspots, as well as cellular (900/850 MHz band), personal communications services (1800/1900 MHz band), and sources of 2.4 GHz and WiMAX (2.3/3.5 GHz) network transmitters. On the other hand, at high frequency, advances in nanotechnology have led to the development of semiconductor-based solar cells, nanoscale antennas for power harvesting applications, and integration of antennas into solar cells to design low-cost light-weight systems. The role of nanoantenna system is transforming thermal energy provided by the sun to electricity. Nanoantennas target the mid-infrared wavelengths where conventional photo voltaic cells are inefficient. However, the concept of using optical rectenna for harvesting solar energy was first introduced four decades ago. Recently, it has invited a surge of interest, with different laboratories around the world working on various aspects of the technology. The result is a technology that can be efficient and inexpensive, requiring only low-cost materials. Unlike conventional solar cells that harvest energy in visible light frequency range. Since the UV frequency range is much greater than visible light, we consider the quantum mechanical behavior of a driven particle in nanoscale antennas for power harvesting applications

    Reconfigurable and multi-functional antennas

    Get PDF
    This thesis describes a research into multi-frequency and filtering antennas. Several novel antennas are presented, each of which addresses a specific issue for future communication systems, in terms of multi-frequency operation, and filtering capability. These antennas seem to be good candidates for implementation in future multiband radios, cognitive radio (CR), and software defined radio (SDR). The filtering antenna provides an additional filtering action which greatly improves the noise performance and reduces the need for filtering circuitry in the RF front end. Two types of frequency reconfigurable antennas are presented. One is tunable left-handed loop over ground plane and the second is slot-fed reconfigurable patch. The operating frequency of the left handed loop is reconfigured by loading varactor diodes whilst the frequency agility in the patch is achieved by inserting switches in the coupling slot. The length of the slot is altered by activating the switches. Compact microstrip antennas with filtering capabilities are presented in this thesis. Two filtering antennas are presented. Whilst the first one consists of three edge-coupled patches, the second filtering antenna consists of rectangular patch coupled to two hairpin resonators. The proposed antennas combine radiating and filtering functions by providing good out of band gain suppression

    Metamaterial antennas for cognitive radio applications

    Get PDF
    Cognitive radio is one of the most promising techniques to efficiently utilize the radio frequency (RF) spectrum. As the Digital Video Broadcasting-Handheld (DVB-H) band is targeted (470-862 MHz), the size of the antenna becomes challenging. Metamaterial concept is used as a miniaturization technique. Two antennas are designed, fabricated and measured. The first one achieved multiband operation by loading it with a metamaterial unit cell. These bands are controlled by engineering the dispersion relation of the unit cell. The second one, which is a 2-lumped elements loaded antenna, achieved wideband operation through the entire DVB-H band with a planar size of 5×2 cm^2. A model is proposed to explain, through simple numerical simulations and an optimization algorithm, the behavior of these component loaded antennas (which are equivalent to metamaterial inspired electrically small antennas)

    Design And Practical Implementation Of Harmonic-Transponder Sensors

    Get PDF
    Harmonic radar is a nonlinear detection technology that transmits and receives radio-frequency (RF) signals at orthogonal frequencies, so as to suppress the undesired clutters, echoes and electromagnetic interreferences due to multipath scattering. Its implementation generally comprises a nonlinear tag (i.e, a harmonic transponder), which picks the interrogation signal at specific fundamental frequency (f0) and converts it into a high/sub-harmonic signal (nf0). Such a technology has been successfully applied to tracking small insects and detection of electrically-small objects in the rich-scattering environment. Similarly, a harmonic sensor is used to interrogate electrically-small and passive sensors, of which the magnitude and peak frequency of output harmonics (e.g., second harmonic) are functions of the parameter to be sensed. A harmonic tag or sensor comprises one or multiple antennas, a frequency modulator, a sensor, a microchip and matching networks. Here, we propose and experimentally validate compact, low-cost, low-profile, and conformal hybrid-fed microstrip antennas for the harmonics-based radar and sensor systems. The proposed 98 microstrip antennas are based on a simple single-layered and hybrid-feed structure. By optimizing the feed position and the geometry of microstrip patch, the fundamental mode and particular higher-order modes can be excited at the fundamental frequency and the second harmonic. We have derived the analytical expressions for calculating the antennas’ resonant frequencies, which have been verified with numerical simulations and measurements. Our results show that the proposed hybrid-feed, single-layered microstrip antennas, although having a compact size and a low profile, can achieve descent realized gain (1.2 – 3.5 dB), good impedance matching (return loss \u3c -15 dB), high isolation (\u3c-20 dB), and favorable co/cross-polarization properties. The proposed microstrip antennas may benefit various size-restricted harmonic transponders used for harmonic radars, harmonic sensors, medical implants, passive radio-frequency identification (RFID), and internet-of-things (IoT) applications

    Synthetic aperture radar-based techniques and reconfigurable antenna design for microwave imaging of layered structures

    Get PDF
    In the past several decades, a number of microwave imaging techniques have been developed for detecting embedded objects (targets) in a homogeneous media. New applications such as nondestructive testing of layered composite structures, through-wall and medical imaging require more advanced imaging systems and image reconstruction algorithms (post-processing) suitable for imaging inhomogeneous (i.e., layered) media. Currently-available imaging algorithms are not always robust, easy to implement, and fast. Synthetic aperture radar (SAR) techniques are some of the more prominent approaches for image reconstruction when considering low loss and homogeneous media. To address limitations of SAR imaging, when interested in imaging an embedded object in an inhomogeneous media with loss, two different methods are introduced, namely; modified piecewise SAR (MPW-SAR) and Wiener filter-based layered SAR (WL-SAR). From imaging system hardware point-of-view, microwave imaging systems require suitable antennas for signal transmission and data collection. A reconfigurable antenna which its characteristics can be dynamically changed provide significant flexibility in terms of beam-forming, reduction in unwanted noise and multiplicity of use including for imaging applications. However, despite these potentially advantageous characteristics, the field of reconfigurable antenna design is fairly new and there is not a methodical design procedure. This issue is addressed by introducing an organized design method for a reconfigurable antenna capable of operating in several distinct frequency bands. The design constraints (e.g., size and gain) can also be included. Based on this method, a novel reconfigurable coplanar waveguide-fed slot antenna is designed to cover several different frequency bands while keeping the antenna size as small as possible --Abstract, page iii

    Analysis, design and implementation of front-end reconfigurable antenna systems (FERAS)

    Get PDF
    The increase in demand on reconfigurable systems and especially for wireless communications applications has stressed the need for smart and agile RF devices that sense and respond to the RF changes in the environment. Many different applications require frequency agility with software control ability such as in a cognitive radio environment where antenna systems have to be designed to fulfill the extendable and reconfigurable multi-service and multi-band requirements. Such applications increase spectrum efficiency as well as the power utilization in modern wireless systems. The emphasis of this dissertation revolves around the following question: Is it possible to come up with new techniques to achieve reconfigurable antenna systems with better performance?\u27 Two main branches constitute the outline of this work. The first one is based on the design of reconfigurable antennas by incorporating photoconductive switching elements in order to change the antenna electrical properties. The second branch relies on the change in the physical structure of the antenna via a rotational motion. In this work a new photoconductive switch is designed with a new light delivery technique. This switch is incorporated into new optically pumped reconfigurable antenna systems (OPRAS). The implementation of these antenna systems in applications such as cognitive radio is demonstrated and discussed. A new radio frequency (RF) technique for measuring the semiconductor carrier lifetime using optically reconfigurable transmission lines is proposed. A switching time investigation for the OPRAS is also accomplished to better cater for the cognitive radio requirements. Moreover, different reconfiguration mechanisms are addressed such as physical alteration of antenna parts via a rotational motion. This technique is supported by software to achieve a complete controlled rotatable reconfigurable cognitive radio antenna system. The inter-correlation between neural networks and cellular automata is also addressed for the design of reconfigurable and multi-band antenna systems for various applications.\u2

    Low-Cost Beam Steerable Antennas Using Parasitic Elements

    Get PDF
    Beam steerable antennas are considered as a possible solution for meeting challenges in military and civilian systems such as satellite communication networks, automotive collision avoidance radar, base stations and biomedical applications. Phased array antennas are a natural choice as the foundation for many steerable antenna platform due to its exibility and gain scalability. The implementation of a phased array requires a large number of electronic components, tending to drive the cost of phased arrays and limit their usage to military applications. The electrically steerable parasitic array radiator (ESPAR) has been introduced as an antenna which is capable of adaptively controlling its beam pattern using parasitic elements loaded with varactors. ESPAR has attracted the attention of researchers from the desire for electrically scanned beams with inexpensive fabrication and has found as a suitable candidate for communication systems applications, including advanced radars, cellular base stations and space communications. The ultimate goal of this research is to design and propose state of the art designs in the �eld of ESPAR that can satisfy the requirements of today's advanced communication systems, which should be cost-e�ective and can compete with other rival technologies. Considering the potentials of ESPAR, it can be proved that it is a good candidate for modern wireless communications. The thesis presents several contributions related to the design and analysis of ESPAR technology using dielectric resonator antenna (DRA) as the main radiator element. First, the thesis presents solutions to alleviate the problems associated in implementing a large ESPAR. The large array is useful in many applications since some required recon�gurable radiation characteristics may not be achievable with a single ESPAR element. The proposed structure consists of 240 perforated DRAs, whichare uniformly excited by a parallel-series feeding network. By employing the perforation technique, the need for aligning and bonding individual DRA is eliminated. The subarrays are placed in an interleaved arrangement to suppress the grating lobes. The proposed large ESPAR can incredibly reduce the number of phase shifter by 80% in comparison with the conventional phased array, which makes it inexpensive. Second, the thesis investigates potentials of ESPAR for massive multi-input multiple output (MIMO) communication. Massive MIMO technology has attracted tremendous interest due to its capabilities in enhancing the data transmission capacity, increasing the reliability, and reducing the multipath fading. However, in this technology for feeding each individual antenna, one radio frequency chain is required that can increase the power consumption and complexity of the structure. Moreover, to obtain decorrelated channels and to reduce mutual coupling, the antenna should be spaced suffciently far from each other that imposes increased physical dimensions. In contrast to the conventional MIMO structures, in ESPAR only one RF chain is needed and the small size constraint turns to be an advantage as the mutual coupling is exploited to form the desired signals. Furthermore, by controlling the tunable loads at each parasitic antenna element, different radiation patterns can be formed which can signi�cantly improve the performance of a MIMO antenna system operating in a changing environment. Thus, by using the advantages of ESPAR, a design approach to address the size and cost issues is proposed through this work. The proposed design is validated by simulation and measurement of a prototype, and results include the antenna and MIMO �gure of merits such as radiation patterns, efficiency, S-parameters, signal correlations, total active reection coeffcient (TARC), and channel capacity. These results have demonstrated that the proposed ESPAR design can be successfully implemented for a massive MIMO structure. Finally, the thesis presents an effective method to design a ESPAR with a circularly polarized (CP) beam-scanning feature. Circular polarization is an ideal polarization due to its advantages in signal propagation properties, which can address the di�culties associated with mobility, inclement weather conditions, and immunity to multi path distortion. In this work, the CP beam steering is achieved by adopting a sequential rotation approach for placing the parasitic antennas that are loaded with tunable varactors. The proposed CP-ESPAR technique eliminates the need of expensive phase shifters, which signi�cantly reduces cost and fabrication complexity. For performance evaluation, a prototype of the proposed antenna is designed, fabricated, and measured. It is observed that the proposed antenna has a monotonic CP beam scanning from { 22 to 22 operating at 10.5 GHz
    corecore