340 research outputs found

    Conformal phased array with beam forming for airborne satellite communication

    Get PDF
    For enhanced communication on board of aircraft novel antenna systems with broadband satellite-based capabilities are required. The installation of such systems on board of aircraft requires the development of a very low-profile aircraft antenna, which can point to satellites anywhere in the upper hemisphere. To this end, phased array antennas which are conformal to the aircraft fuselage are attractive. In this paper two key aspects of conformal phased array antenna arrays are addressed: the development of a broadband Ku-band antenna and the beam synthesis for conformal array antennas. The antenna elements of the conformal array are stacked patch antennas with dual linear polarization which have sufficient bandwidth. For beam forming synthesis a method based on a truncated Singular Value Decomposition is proposed

    Dual-band circularly-polarized shared-aperture array for C/X-Band satellite communications

    Get PDF
    A novel method of achieving a single-feed circularly-polarized (CP) microstrip antenna with both broad impedance bandwidth and axial ratio (AR) bandwidth is presented. The CP characteristics are generated by employing a resonator to excite the two orthogonal modes of the patch via two coupling paths and the required 90 o phase difference is achieved by using the different orders of the two paths. The presented method, instead of conventional methods that power dividers and phase delay lines are usually required, not only significantly enhances the bandwidths of the antenna, but also results in a compact feed, reduced loss and high gain. Based on this method, a dual-band shared-aperture CP array antenna is implemented for C/X-band satellite communications. The antenna aperture includes a 2 × 2 array at C-band and a 4 ×4 array at X-band. To accommodate the C/X-band elements into the same aperture while achieving a good isolation between them, the C-band circular patches are etched at the four corners. The measured results agree well with the simulations, showing a wide impedance bandwidth of 21% and 21.2% at C-and X-band, respectively. The C-and X-band 3-dB AR bandwidths are 13.2% and 12.8%. The array also exhibits a high aperture efficiency of over 55%, low side-lobe (C-band: −12.5 dB; X-band: −15 dB) and high gain (C-band: 14.5 dBic; X-band: 17.5 dBic)

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Hybrid Maritime Satellite Communication Antenna

    Get PDF
    • 

    corecore