776 research outputs found

    Broadband Video Streaming with Built-in Resiliency

    Get PDF
    Mobile TV services are being actively developed for a variety of last hop, broadband wireless technologies. Application layer error control mechanisms such as Broadband Video Streaming seek to reduce packet loss from raw UDP transport. This paper goes further than existing streaming protocols by integrating source-coded error resilience through data-partitioning and intra-refresh macroblocks with the error control mechanism. Results show that for a temporally complex sequence, up to 6.23 dB gain in video quality (PSNR) can result, depending on burst error lengths across an IEEE 802.16e link

    Broadband Video Streaming with Built-in Resiliency

    Get PDF
    Mobile TV services are being actively developed for a variety of last hop, broadband wireless technologies. Application layer error control mechanisms such as Broadband Video Streaming seek to reduce packet loss from raw UDP transport. This paper goes further than existing streaming protocols by integrating source-coded error resilience through data-partitioning and intra-refresh macroblocks with the error control mechanism. Results show that for a temporally complex sequence, up to 6.23 dB gain in video quality (PSNR) can result, depending on burst error lengths across an IEEE 802.16e link

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    Video over DSL with LDGM Codes for Interactive Applications

    Get PDF
    Digital Subscriber Line (DSL) network access is subject to error bursts, which, for interactive video, can introduce unacceptable latencies if video packets need to be re-sent. If the video packets are protected against errors with Forward Error Correction (FEC), calculation of the application-layer channel codes themselves may also introduce additional latency. This paper proposes Low-Density Generator Matrix (LDGM) codes rather than other popular codes because they are more suitable for interactive video streaming, not only for their computational simplicity but also for their licensing advantage. The paper demonstrates that a reduction of up to 4 dB in video distortion is achievable with LDGM Application Layer (AL) FEC. In addition, an extension to the LDGM scheme is demonstrated, which works by rearranging the columns of the parity check matrix so as to make it even more resilient to burst errors. Telemedicine and video conferencing are typical target applications

    Enabling Large-Scale Peer-to-Peer Stored Video Streaming Service with QoS Support

    Get PDF
    This research aims to enable a large-scale, high-volume, peer-to-peer, stored-video streaming service over the Internet, such as on-line DVD rentals. P2P allows a group of dynamically organized users to cooperatively support content discovery and distribution services without needing to employ a central server. P2P has the potential to overcome the scalability issue associated with client-server based video distribution networks; however, it brings a new set of challenges. This research addresses the following five technical challenges associated with the distribution of streaming video over the P2P network: 1) allow users with limited transmit bandwidth capacity to become contributing sources, 2) support the advertisement and discovery of time-changing and time-bounded video frame availability, 3) Minimize the impact of distribution source losses during video playback, 4) incorporate user mobility information in the selection of distribution sources, and 5) design a streaming network architecture that enables above functionalities.To meet the above requirements, we propose a video distribution network model based on a hybrid architecture between client-server and P2P. In this model, a video is divided into a sequence of small segments and each user executes a scheduling algorithm to determine the order, the timing, and the rate of segment retrievals from other users. The model also employs an advertisement and discovery scheme which incorporates parameters of the scheduling algorithm to allow users to share their life-time of video segment availability information in one advertisement and one query. An accompanying QoS scheme allows reduction in the number of video playback interruptions while one or more distribution sources depart from the service prematurely.The simulation study shows that the proposed model and associated schemes greatly alleviate the bandwidth requirement of the video distribution server, especially when the number of participating users grows large. As much as 90% of load reduction was observed in some experiments when compared to a traditional client-server based video distribution service. A significant reduction is also observed in the number of video presentation interruptions when the proposed QoS scheme is incorporated in the distribution process while certain percentages of distribution sources depart from the service unexpectedly

    Distributed Rate Allocation Policies for Multi-Homed Video Streaming over Heterogeneous Access Networks

    Full text link
    We consider the problem of rate allocation among multiple simultaneous video streams sharing multiple heterogeneous access networks. We develop and evaluate an analytical framework for optimal rate allocation based on observed available bit rate (ABR) and round-trip time (RTT) over each access network and video distortion-rate (DR) characteristics. The rate allocation is formulated as a convex optimization problem that minimizes the total expected distortion of all video streams. We present a distributed approximation of its solution and compare its performance against H-infinity optimal control and two heuristic schemes based on TCP-style additive-increase-multiplicative decrease (AIMD) principles. The various rate allocation schemes are evaluated in simulations of multiple high-definition (HD) video streams sharing multiple access networks. Our results demonstrate that, in comparison with heuristic AIMD-based schemes, both media-aware allocation and H-infinity optimal control benefit from proactive congestion avoidance and reduce the average packet loss rate from 45% to below 2%. Improvement in average received video quality ranges between 1.5 to 10.7 dB in PSNR for various background traffic loads and video playout deadlines. Media-aware allocation further exploits its knowledge of the video DR characteristics to achieve a more balanced video quality among all streams.Comment: 12 pages, 22 figure

    2022 18th International Conference on the Design of Reliable Communication Networks (DRCN)

    Get PDF
    Producción CientíficaResiliency (fault tolerance) is an important aspect in communication networks: a robust and well-planned network must have a strategy to face equipment failures. The planning of Multi-Access Edge Computing (MEC) systems should not only consider computing resources, but also the fiber connections to base stations (BSs) and to the WAN network gateway. This joint design is particularly important in sparsely populated areas (e.g., rural areas), as the distances are much longer than in urban environments. When solving the planning problem for these systems, reserving backup resources for both computing and networks is a must to ensure resiliency. In this paper, we propose and compare different strategies for the planning of resilient MEC networks assuming that there are backup resources for both MEC servers and fibers. The method provides protection against single-fiber failure or single-MEC node failure (with part or all the servers affected). The different approaches are evaluated in terms of cost and propagation delay from BSs to the primary and backup MEC servers. Results show the advantages of using edge technology instead of a centralized design, and they also suggest that is more convenient to jointly plan the main and backup MEC architecture than to deploy the backup resources over an existent infrastructure.FEDER a través del Programa INTERREG V-A España-Portugal 2014-2020 (0677_DISRUPTIVE_2_E)Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033 y RED2018-102585-T)Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft
    corecore