9 research outputs found

    Comparing Julia to Performance Portable Parallel Programming Models for HPC

    Get PDF

    PoCL-R: An Open Standard Based Offloading Layer for Heterogeneous Multi-Access Edge Computing with Server Side Scalability

    Full text link
    We propose a novel computing runtime that exposes remote compute devices via the cross-vendor open heterogeneous computing standard OpenCL and can execute compute tasks on the MEC cluster side across multiple servers in a scalable manner. Intermittent UE connection loss is handled gracefully even if the device's IP address changes on the way. Network-induced latency is minimized by transferring data and signaling command completions between remote devices in a peer-to-peer fashion directly to the target server with a streamlined TCP-based protocol that yields a command latency of only 60 microseconds on top of network round-trip latency in synthetic benchmarks. The runtime can utilize RDMA to speed up inter-server data transfers by an additional 60% compared to the TCP-based solution. The benefits of the proposed runtime in MEC applications are demonstrated with a smartphone-based augmented reality rendering case study. Measurements show up to 19x improvements to frame rate and 17x improvements to local energy consumption when using the proposed runtime to offload AR rendering from a smartphone. Scalability to multiple GPU servers in real-world applications is shown in a computational fluid dynamics simulation, which scales with the number of servers at roughly 80% efficiency which is comparable to an MPI port of the same simulation.Comment: 13 pages, 17 figure

    AUTOMATING DATA-LAYOUT DECISIONS IN DOMAIN-SPECIFIC LANGUAGES

    Get PDF
    A long-standing challenge in High-Performance Computing (HPC) is the simultaneous achievement of programmer productivity and hardware computational efficiency. The challenge has been exacerbated by the onset of multi- and many-core CPUs and accelerators. Only a few expert programmers have been able to hand-code domain-specific data transformations and vectorization schemes needed to extract the best possible performance on such architectures. In this research, we examined the possibility of automating these methods by developing a Domain-Specific Language (DSL) framework. Our DSL approach extends C++14 by embedding into it a high-level data-parallel array language, and by using a domain-specific compiler to compile to hybrid-parallel code. We also implemented an array index-space transformation algebra within this high-level array language to manipulate array data-layouts and data-distributions. The compiler introduces a novel method for SIMD auto-vectorization based on array data-layouts. Our new auto-vectorization technique is shown to outperform the default auto-vectorization strategy by up to 40% for stencil computations. The compiler also automates distributed data movement with overlapping of local compute with remote data movement using polyhedral integer set analysis. Along with these main innovations, we developed a new technique using C++ template metaprogramming for developing embedded DSLs using C++. We also proposed a domain-specific compiler intermediate representation that simplifies data flow analysis of abstract DSL constructs. We evaluated our framework by constructing a DSL for the HPC grand-challenge domain of lattice quantum chromodynamics. Our DSL yielded performance gains of up to twice the flop rate over existing production C code for selected kernels. This gain in performance was obtained while using less than one-tenth the lines of code. The performance of this DSL was also competitive with the best hand-optimized and hand-vectorized code, and is an order of magnitude better than existing production DSLs.Doctor of Philosoph

    Guided rewriting and constraint satisfaction for parallel GPU code generation

    Get PDF
    Graphics Processing Units (GPUs) are notoriously hard to optimise for manually due to their scheduling and memory hierarchies. What is needed are good automatic code generators and optimisers for such parallel hardware. Functional approaches such as Accelerate, Futhark and LIFT leverage a high-level algorithmic Intermediate Representation (IR) to expose parallelism and abstract the implementation details away from the user. However, producing efficient code for a given accelerator remains challenging. Existing code generators depend on the user input to choose a subset of hard-coded optimizations or automated exploration of implementation search space. The former suffers from the lack of extensibility, while the latter is too costly due to the size of the search space. A hybrid approach is needed, where a space of valid implementations is built automatically and explored with the aid of human expertise. This thesis presents a solution combining user-guided rewriting and automatically generated constraints to produce high-performance code. The first contribution is an automatic tuning technique to find a balance between performance and memory consumption. Leveraging its functional patterns, the LIFT compiler is empowered to infer tuning constraints and limit the search to valid tuning combinations only. Next, the thesis reframes parallelisation as a constraint satisfaction problem. Parallelisation constraints are extracted automatically from the input expression, and a solver is used to identify valid rewriting. The constraints truncate the search space to valid parallel mappings only by capturing the scheduling restrictions of the GPU in the context of a given program. A synchronisation barrier insertion technique is proposed to prevent data races and improve the efficiency of the generated parallel mappings. The final contribution of this thesis is the guided rewriting method, where the user encodes a design space of structural transformations using high-level IR nodes called rewrite points. These strongly typed pragmas express macro rewrites and expose design choices as explorable parameters. The thesis proposes a small set of reusable rewrite points to achieve tiling, cache locality, data reuse and memory optimisation. A comparison with the vendor-provided handwritten kernel ARM Compute Library and the TVM code generator demonstrates the effectiveness of this thesis' contributions. With convolution as a use case, LIFT-generated direct and GEMM-based convolution implementations are shown to perform on par with the state-of-the-art solutions on a mobile GPU. Overall, this thesis demonstrates that a functional IR yields well to user-guided and automatic rewriting for high-performance code generation

    Compiler-centric across-stack deep learning acceleration

    Get PDF
    Optimizing the deployment of Deep Neural Networks (DNNs) is hard. Despite deep learning approaches increasingly providing state-of-the-art solutions to a variety of difficult problems, such as computer vision and natural language processing, DNNs can be prohibitively expensive, for example, in terms of inference time or memory usage. Effective exploration of the design space requires a holistic approach, including a range of topics from machine learning, systems, and hardware. The rapid proliferation of deep learning applications has raised demand for efficient exploration and acceleration of deep learning based solutions. However, managing the range of optimization techniques, as well as how they interact with each other across the stack is a non-trivial task. A family of emerging specialized compilers for deep learning, tensor compilers, appear to be a strong candidate to help manage the complexity of across-stack optimization choices, and enable new approaches. This thesis presents new techniques and explorations of the Deep Learning Acceleration Stack (DLAS), with the perspective that the tensor compiler will increasingly be the center of this stack. First, we motivate the challenges in exploring DLAS, by describing the experience of running a perturbation study varying parameters at every layer of the stack. The core of the study is implemented using a tensor compiler, which reduces the complexity of evaluating the wide range of variants, although still requires a significant engineering effort to realize. Next, we develop a new algorithm for grouped convolution, a model optimization technique for which existing solutions provided poor inference time scaling. We implement and optimize our algorithm using a tensor compiler, outperforming existing approaches by 5.1× on average (arithmetic mean). Finally, we propose a technique, transfer-tuning, to reduce the search time required for automatic tensor compiler code optimization, reducing the search time required by 6.5× on average. The techniques and contributions of this thesis across these interconnected domains demonstrate the exciting potential of tensor compilers to simplify and improve design space exploration for DNNs, and their deployment. The outcomes of this thesis enable new lines of research to enable machine learning developers to keep up with the rapidly evolving landscape of neural architectures and hardware

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest
    corecore