1,843 research outputs found

    Multivariate sensor signals collected by aquatic drones involved in water monitoring: A complete dataset

    Get PDF
    Sensor data generated by intelligent systems, such as autonomous robots, smart buildings and other systems based on artificial intelligence, represent valuable sources of knowledge in today's data-driven society, since they contain information about the situations these systems face during their operation. These data are usually multivariate time series since modern technologies enable the simultaneous acquisition of multiple signals during long periods of time. In this paper we present a dataset containing sensor traces of six data acquisition campaigns performed by autonomous aquatic drones involved in water monitoring. A total of 5.6 h of navigation are available, with data coming from both lakes and rivers, and from different locations in Italy and Spain. The monitored variables concern both the internal state of the drone (e.g., battery voltage, GPS position and signals to propellers) and the state of the water (e.g., temperature, dissolved oxygen and electrical conductivity). Data were collected in the context of the EU-funded Horizon 2020 project INTCATCH (http://www.intcatch.eu) which aims to develop a new paradigm for monitoring water quality of catchments. The aquatic drones used for data acquisition are Platypus Lutra boats. Both autonomous and manual drive is used in different parts of the navigation. The dataset is analyzed in the paper “Time series segmentation for state-model generation of autonomous aquatic drones: A systematic framework” [1] by means of recent time series clustering/segmentation techniques to extract data-driven models of the situations faced by the drones in the data acquisition campaigns. These data have strong potential for reuse in other kinds of data analysis and evaluation of machine learning methods on real-world datasets [2]. Moreover, we consider this dataset valuable also for the variety of situations faced by the drone, from which machine learning techniques can learn behavioral patterns or detect anomalous activities. We also provide manual labeling for some known states of the drones, such as, drone inside/outside the water, upstream/downstream navigation, manual/autonomous drive, and drone turning, that represent a ground truth for validation purposes. Finally, the real-world nature of the dataset makes it more challenging for machine learning methods because it contains noisy samples collected while the drone was exposed to atmospheric agents and uncertain water flow conditions

    Multivariate sensor signals collected by aquatic drones involved in water monitoring: A complete dataset

    Get PDF
    Sensor data generated by intelligent systems, such as autonomous robots, smart buildings and other systems based on artificial intelligence, represent valuable sources of knowledge in today\u2019s data-driven society, since they contain information about the situations these systems face during their operation. These data are usually multivariate time series since modern technologies enable the simultaneous acquisition of multiple signals during long periods of time. In this paper we present a dataset containing sensor traces of six data acquisition campaigns performed by autonomous aquatic drones involved in water monitoring. A total of 5.6 hours of navigation are available, with data coming from both lakes and rivers, and from different locations in Italy and Spain. The monitored variables concern both the internal state of the drone (e.g., battery voltage, GPS position and signals to propellers) and the state of the water (e.g., temperature, dissolved oxygen and electrical conductivity). Data were collected in the context of the EU-funded Horizon 2020 project INTCATCH (http://www.intcatch.eu) which aims to develop a new paradigm for monitoring water quality of catchments. The aquatic drones used for data acquisition are Platypus Lutra boats. Both autonomous and manual drive is used in different parts of the navigation. The dataset is analyzed in the paper \u201cTime series segmentation for state-model generation of autonomous aquatic drones: A systematic framework\u201d [1] by means of recent time series clustering/segmentation techniques to extract data-driven models of the situations faced by the drones in the data acquisition campaigns. These data have strong potential for reuse in other kinds of data analysis and evaluation of machine learning methods on real-world datasets [2]. Moreover, we consider this dataset valuable also for the variety of situations faced by the drone, from which machine learning techniques can learn behavioural patterns or detect anomalous activities. We also provide manual labeling for some known states of the drones, such as, drone inside/outside the water, upstream/downstream navigation, manual/autonomous drive, and drone turning, that represent a ground truth for validation purposes. Finally, the real-world nature of the dataset makes it more challenging for machine learning methods because it contains noisy samples collected while the drone was exposed to atmospheric agents and uncertain water flow conditions

    The Performance Assessment of a Small Lighter-Than-Air Vehicle for Earth Science Remote Sensing Missions

    Get PDF
    This summer, a lighter-than-air (LTA) drone was tested in Alaska to measure glacier bedrock fracture density and orientation. Five flights were made in low wind conditions, and the directional stability of the airship made it too challenging to control in flight to realistically acquire useful image sets. The directional stability of the airship, when compared to an actively stabilized consumer-grade quadcopter was inferior. Flight logs and GPS data from the GPS on the LTA drone were analyzed and a quantitative assessment of the observed instability was made. The yaw axis and pitch were analyzed, and the yaw axis instability was greater than the pitch axis instability. The source of this instability included the excessive sensitivity of the yaw thruster, and the inherent yaw instability of the blimp shape. An attempt was made to reduce the yaw instability by reducing the yaw motor size. The observed instability may have also resulted from external sources like wind gusts and the glacier microclimate. The analysis informed modifications of the LTA drone to make it more stable for glacier research, which were implemented and tested. The thrust output of the tail motor was reduced by 59%. This change was associated with a reduction in median heading variability of 47% between test flights before and after modification. The reduction was proven statistically significant at a 99% confidence interval. Also, recommendations for further modifications include the implementation of autonomous flight control and envelope optimization

    Drone Obstacle Avoidance and Navigation Using Artificial Intelligence

    Get PDF
    This thesis presents an implementation and integration of a robust obstacle avoidance and navigation module with ardupilot. It explores the problems in the current solution of obstacle avoidance and tries to mitigate it with a new design. With the recent innovation in artificial intelligence, it also explores opportunities to enable and improve the functionalities of obstacle avoidance and navigation using AI techniques. Understanding different types of sensors for both navigation and obstacle avoidance is required for the implementation of the design and a study of the same is presented as a background. A research on an autonomous car is done for better understanding autonomy and learning how it is solving the problem of obstacle avoidance and navigation. The implementation part of the thesis is focused on the design of a robust obstacle avoidance module and is tested with obstacle avoidance sensors such as Garmin lidar and Realsense r200. Image segmentation is used to verify the possibility of using the convolutional neural network for better understanding the nature of obstacles. Similarly, the end to end control with a single camera input using a deep neural network is used for verifying the possibility of using AI for navigation. In the end, a robust obstacle avoidance library is developed and tested both in the simulator and real drone. Image segmentation is implemented, deployed and tested. A possibility of an end to end control is also verified by obtaining a proof of concept

    Parking lot monitoring system using an autonomous quadrotor UAV

    Get PDF
    The main goal of this thesis is to develop a drone-based parking lot monitoring system using low-cost hardware and open-source software. Similar to wall-mounted surveillance cameras, a drone-based system can monitor parking lots without affecting the flow of traffic while also offering the mobility of patrol vehicles. The Parrot AR Drone 2.0 is the quadrotor drone used in this work due to its modularity and cost efficiency. Video and navigation data (including GPS) are communicated to a host computer using a Wi-Fi connection. The host computer analyzes navigation data using a custom flight control loop to determine control commands to be sent to the drone. A new license plate recognition pipeline is used to identify license plates of vehicles from video received from the drone

    Securing a UAV Using Features from an EEG Signal

    Get PDF
    This thesis focuses on an approach which entails the extraction of Beta component of the EEG (Electroencephalogram) signal of a user and uses his/her EEG beta data to generate a random AES (Advanced Encryption Standard) encryption key. This Key is used to encrypt the communication between the UAVs (Unmanned aerial vehicles) and the ground control station. UAVs have attracted both commercial and military organizations in recent years. The progress in this field has reached significant popularity, and the research has incorporated different areas from the scientific domain. UAV communication became a significant concern when an attack on a Predator UAV occurred in 2009, which allowed the hijackers to get the live video stream. Since a UAVs major function depend on its onboard auto pilot, it is important to harden the system against vulnerabilities. In this thesis, we propose a biometric system to encrypt the UAV communication by generating a key which is derived from Beta component of the EEG signal of a user. We have developed a safety mechanism that gets activated in case the communication of the UAV from the ground control station gets attacked. This system was validated on a commercial UAV under malicious attack conditions during which we implement a procedure where the UAV return safely to an initially deployed "home" position

    UAV Formation Flight Utilizing a Low Cost, Open Source Configuration

    Get PDF
    The control of multiple unmanned aerial vehicles (UAVs) in a swarm or cooperative team scenario has been a topic of great interest for well over a decade, growing steadily with the advancements in UAV technologies. In the academic community, a majority of the studies conducted rely on simulation to test developed control strategies, with only a few institutions known to have nurtured the infrastructure required to propel multiple UAV control studies beyond simulation and into experimental testing. With the Cal Poly UAV FLOC Project, such an infrastructure was created, paving the way for future experimentation with multiple UAV control systems. The control system architecture presented was built on concepts developed in previous work by Cal Poly faculty and graduate students. An outer-loop formation flight controller based on a virtual waypoint implementation of potential function guidance was developed for use on an embedded microcontroller. A commercially-available autopilot system, designed for fully autonomous waypoint navigation utilizing low cost hardware and open source software, was modified to include the formation flight controller and an inter-UAV communication network. A hardware-in-the-loop (HIL) simulation was set up for multiple UAV testing and was utilized to verify the functionality of the modified autopilot system. HIL simulation results demonstrated leader-follower formation convergence to 15 meters as well as formation flight with three UAVs. Several sets of flight tests were conducted, demonstrating a successful leader-follower formation, but with relative distance convergence only reaching a steady state value of approximately 35 +/- 5 meters away from the leader

    Optimized Endpoint Delivery Via Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are remotely piloted aircraft with a range of varying applications. Though early adoption of UAVs focused on military applications, surveillance, photography, and agricultural applications are presently on the rise. This work aims to ascertain how UAVs may be employed to elicit deceased transportation times, increased power efficiency, and improved safety. Resulting in optimized end point delivery. A combination of tools and techniques, involving a mathematical model, UAV simulations, redundant control systems, and custom designed electrical and mechanical components were used towards reaching the goal of a 10-kilogram maximum payload delivered 10 miles under 30 minutes. Two UAV prototypes were developed, the second of which (V2) showed promising results. Velocities achieved in V2, in combination with a versatile payload connector and proper networking, allowed for 5-10 mile deliveries of goods less than 8-kilograms to be achieved within a metropolis faster than the 30-minute benchmark
    corecore