10 research outputs found

    SMOS calibration and validation activities with airborne interferometric radiometer HUT-2D during spring 2010

    Get PDF
    In this paper we present calibration and validation activities of European Space Agency’s SMOS mission, which utilize airborne interferomentric L-band radiometer system HUT-2D of the Aalto University. During spring 2010 the instrument was used to measure three SMOS validation target areas, one in Denmark and two in Germany. We present these areas shortly, and describe the airborne activities. We show some exemplary measurements of the radiometer system and demonstrate the studies using the data

    Statistical analysis and combination of active and passive microwave remote sensing methods for soil moisture retrieval

    Get PDF
    Knowledge about soil moisture and its spatio-temporal dynamics is essential for the improvement of climate and hydrological modeling, including drought and flood monitoring and forecasting, as well as weather forecasting models. In recent years, several soil moisture products from active and passive microwave remote sensing have become available with high temporal resolution and global coverage. Thus, the validation and evaluation of spatial and temporal soil moisture patterns are of great interest, for improving soil moisture products as well as for their proper use in models or other applications. This thesis analyzes the different accuracy levels of global soil moisture products and identifies the major influencing factors on this accuracy based on a small catchment example. Furthermore, on global scale, structural differences betweenthe soil moisture products were investigated. This includes in particular the representation of spatial and temporal patterns, as well as a general scaling law of soil moisture variability with extent scale. The results of the catchment scale as well as the global scale analyses identified vegetation to have a high impact on the accuracy of remotely sensed soil moisture products. Therefore, an improved method to consider vegetation characteristics in pasive soil moisture retrieval from active radar satellite data was developed and tested. The knowledge gained by this thesis will contribute to improve soil moisture retrieval of current and future microwave remote sensors (e.g. SMOS or SMAP)

    Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations

    Full text link
    The Community Land Model (CLM) includes a large variety of parameterizations, also for flow in the unsaturated zone and soil properties. Soil properties introduce uncertainties into land surface model predictions. In this paper, soil moisture and soil properties are updated for the coupled CLM and Community Microwave Emission Model (CMEM) by the Local Ensemble Transform Kalman Filter (LETKF) and the state augmentation method. Soil properties are estimated through the update of soil textural properties and soil organic matter density. These variables are used in CLM for predicting the soil moisture retention characteristic and the unsaturated hydraulic conductivity, and the soil texture is used in CMEM to calculate the soil dielectric constant. The following scenarios were evaluated for the joint state and parameter estimation with help of synthetic L-band brightness temperature data assimilation: (i) the impact of joint state and parameter estimation; (ii) updating of soil properties in CLM alone, CMEM alone or both CLM and CMEM; (iii) updating of soil properties without soil moisture update; (iv) the observation localization of LETKF. The results show that the characterization of soil properties through the update of textural properties and soil organic matter density can strongly improve with assimilation of brightness temperature data. The optimized soil properties also improve the characterization of soil moisture, soil temperature, actual evapotranspiration, sensible heat flux, and soil heat flux. The best results are obtained if the soil properties are updated only. The coupled CLM and CMEM model is helpful for the parameter estimation. If soil properties are biased, assimilation of soil moisture data with only state updates increases the root mean square error for evapotranspiration, sensible heat flux, and soil heat flux

    SMOS validation in the Skjern River Catchment, Denmark

    Get PDF

    The Indian COSMOS Network (ICON): validating L-band remote sensing and modelled soil moisture data products

    Get PDF
    Availability of global satellite based Soil Moisture (SM) data has promoted the emergence of many applications in climate studies, agricultural water resource management and hydrology. In this context, validation of the global data set is of substance. Remote sensing measurements which are representative of an area covering 100 m2 to tens of km2 rarely match with in situ SM measurements at point scale due to scale difference. In this paper we present the new Indian Cosmic Ray Network (ICON) and compare it’s data with remotely sensed SM at different depths. ICON is the first network in India of the kind. It is operational since 2016 and consist of seven sites equipped with the COSMOS instrument. This instrument is based on the Cosmic Ray Neutron Probe (CRNP) technique which uses non-invasive neutron counts as a measure of soil moisture. It provides in situ measurements over an area with a radius of 150–250 m. This intermediate scale soil moisture is of interest for the validation of satellite SM. We compare the COSMOS derived soil moisture to surface soil moisture (SSM) and root zone soil moisture (RZSM) derived from SMOS, SMAP and GLDAS_Noah. The comparison with surface soil moisture products yield that the SMAP_L4_SSM showed best performance over all the sites with correlation (R) values ranging from 0.76 to 0.90. RZSM on the other hand from all products showed lesser performances. RZSM for GLDAS and SMAP_L4 products show that the results are better for the top layer R = 0.75 to 0.89 and 0.75 to 0.90 respectively than the deeper layers R = 0.26 to 0.92 and 0.6 to 0.8 respectively in all sites in India. The ICON network will be a useful tool for the calibration and validation activities for future SM missions like the NASA-ISRO Synthetic Aperture Radar (NISAR)

    Calibration of Cosmic-Ray Soil Neutron Sensors (CRNS) in Different Land Use-Land Covers in Lower Brazos River Basin: A Modeling Approach

    Get PDF
    The cosmic-ray neutron sensors (CRNS) are a proximal sensor that can be used to estimate spatially averaged soil moisture at hectometer scale. The sensor measures the number of thermalized neutrons created by the collision between cosmic rays and atmosphere that interact with hydrogen atoms present in the environment and can be used to estimate soil moisture. However, extensive in-situ soil moisture measurements are needed to separate the signal of soil moisture from all other hydrogen pools such as aboveground biomass and atmospheric water content to calibrate the sensor. The objective of this study is to introduce a new technique of calibrating the sensor by evaluating water budget closures using CRNS and a calibrated sub-surface model Hydrus with minimal ground measurements. We installed CRNS at three sites in the Brazos river basin representing different land covers and management practices: i) traditional agriculture, ii) native prairie, and iii) managed prairie. The model was parameterized by inverting profile soil moisture information from just three locations in each land cover using the Shuffled Complex Evolution Algorithm in Hydrus-1D. The hydraulic parameters for the entire field were estimated by interpolating between the three locations to populate a Hydrus 2D model domain which was used to simulate the soil moisture distribution in the field. The CRNS was calibrated against the area average of modeled soil moisture distribution in the field. The calibrated dataset was able to capture the soil water budget at all the three sites with a water budget closure error of 0.01 m^3m^-3 -0.07 m^3m^-3 . The first part of validation was done by evaluating the calibrated output against intensively measured gravimetric soil moisture. We achieved acceptable values of RMSE (0.03m^3m^-3 - 0.06 m^3m^-3 ).For second part of validation we compare the evapotranspiration (ET) derived from Landsat thermal sensors and calibrated CRNS output. The ET from Landsat 8 was derived using METRIC algorithm which solves energy balance equation to provide the estimates. The values are calibrated against the reference ET acquired using Penman-Monteith equation. ET from CRNS is calculated using piecewise linear regression model. CRNS performed better than the Landsat-ET and has higher temporal resolution. The method reduces the labor in the regions where conducting field campaigns is difficult. Additionally, CRNS presents itself as a viable alternative to in-situ electromagnetic sensors in the clayey soil where the performance of these sensors is poor due to signal distortion

    Determination of Soil Moisture and Vegetation Parameters from Spaceborne C-Band SAR on Agricultural Areas

    Get PDF
    Soil moisture is an important factor influencing hydrological and meteorological exchange processes at the land surface. As ground measurements of soil moisture cannot provide spatial-ly distributed information, remote sensing of soil moisture using Synthetic Aperture Radar (SAR) offers an alternative. To derive soil moisture from vegetated areas with SAR, the influ-ence of vegetation parameters on SAR backscatter must be considered, though. The first part of the study analyses the potential to use a qualitative soil moisture index from ERS-SAR with high spatial resolution that can be used without ground truth soil moisture and vegetation data. The index ranges from low to high soil moisture instead of giving absolute soil moisture values. The method is applied to agricultural areas in the catchment of the river Rur in Germany. The soil moisture index represents wetting and drying tendencies well when compared to precipitation records and behaves like in-situ soil moisture regarding its variabil-ity. The analysis of spatial patterns from the soil moisture index by using semivariograms re-veals that differences in management that result for example in differences in evapotranspira-tion from one to the next agricultural field, are the only influence on spatial patterns of soil moisture in the Rur catchment. This study confirms the applicability of a high-resolution soil moisture index for monitoring soil moisture changes and to analyze spatial soil moisture pat-terns. The soil moisture index could be used as input to hydrological models and could substi-tute antecedent precipitation, which needs precipitation stations, as a proxy to soil moisture. The second part of the study examines the capability of dual-polarimetric C-Band SAR data with high incidence angles from the Sentinel-1 satellites to derive soil moisture and vegetation parameters quantitatively. A processing scheme for Sentinel-1 Level-1 data is presented to produce images of different SAR observables that are compared to extensive ground meas-urements of soil moisture and vegetation parameters. It shows that soil moisture retrieval is feasible from bare soil and maize with an RMSE of 7 Vol%. From other land use types, dif-ferent vegetation parameters could be retrieved with an error of around 25 % of their range, in median. Neither soil moisture nor vegetation parameters could be derived from grassland and triticale due to the influence of the thatch layer and the missing of a clear row structure. Both grassland and triticale are in contrast to the other crops not sown in rows on our research fields. The analysis has shown that the incidence angle is of main importance for the capability of C-band SAR to derive soil moisture and that the availability of at least one co- and cross-polarized channel is important for the quantitative retrieval of land surface parameters. The dual-pol H2α parameters were not meaningful for soil moisture and vegetation parameter re-trieval in this study
    corecore