8,147 research outputs found

    BioGUID: resolving, discovering, and minting identifiers for biodiversity informatics

    Get PDF
    Background: Linking together the data of interest to biodiversity researchers (including specimen records, images, taxonomic names, and DNA sequences) requires services that can mint, resolve, and discover globally unique identifiers (including, but not limited to, DOIs, HTTP URIs, and LSIDs). Results: BioGUID implements a range of services, the core ones being an OpenURL resolver for bibliographic resources, and a LSID resolver. The LSID resolver supports Linked Data-friendly resolution using HTTP 303 redirects and content negotiation. Additional services include journal ISSN look-up, author name matching, and a tool to monitor the status of biodiversity data providers. Conclusion: BioGUID is available at http://bioguid.info/. Source code is available from http://code.google.com/p/bioguid/

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Biodiversity informatics: the challenge of linking data and the role of shared identifiers

    Get PDF
    A major challenge facing biodiversity informatics is integrating data stored in widely distributed databases. Initial efforts have relied on taxonomic names as the shared identifier linking records in different databases. However, taxonomic names have limitations as identifiers, being neither stable nor globally unique, and the pace of molecular taxonomic and phylogenetic research means that a lot of information in public sequence databases is not linked to formal taxonomic names. This review explores the use of other identifiers, such as specimen codes and GenBank accession numbers, to link otherwise disconnected facts in different databases. The structure of these links can also be exploited using the PageRank algorithm to rank the results of searches on biodiversity databases. The key to rich integration is a commitment to deploy and reuse globally unique, shared identifiers (such as DOIs and LSIDs), and the implementation of services that link those identifiers

    Advances in biotechnology: genomics and genome editing

    Get PDF
    Genomics, the study of genes, their functions and related techniques has become a crucial science for developing understanding of life processes and how they evolve. Since the advent of the human genome project, huge strides have been made in developing understanding of DNA and RNA sequence information and how it can be put to good use in the biotechnology sector. Newly derived sequencing and bioinformatics tools have added to the torrent of new insights gained, so that 'sequence once and query often' type DNA apps are now becoming reality. Genome editing, using tools such as CRISPR/Cas9 nuclease or Cpf1 nuclease, provide rapid methods for inserting, deleting or modifying DNA sequences in highly precise ways, in virtually any animal, plant or microbial system. Recent international discussions have considered human germline gene editing, amongst other aspects of this technology. Whether or not gene edited plants will be considered as genetically modified remains an important question. This will determine the regulatory processes adopted by different groups of nations and applicability to feeding the world's ever growing population. Questions surrounding the intellectual property rights associated with gene editing must also be resolved. Mitochondrial replacement therapy leading to '3-Parent Babies' has been successfully carried out in Mexico, by an international team, to correct mother to child mitochondrial disease transmission. The UK has become the first country to legally allow 'cautious use' of mitochondrial donation in treatment. Genomics and genome editing will continue to advance what can be achieved technically, whilst society determines whether or not what can be done should be applied

    Alignment-free Genomic Analysis via a Big Data Spark Platform

    Get PDF
    Motivation: Alignment-free distance and similarity functions (AF functions, for short) are a well established alternative to two and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to data-intensive applications, the computation of AF functions is a Big Data problem, with the recent Literature indicating that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat surprisingly, despite the increasing popularity of Big Data technologies in Computational Biology, the development of a Big Data platform for those tasks has not been pursued, possibly due to its complexity. Results: We fill this important gap by introducing FADE, the first extensible, efficient and scalable Spark platform for Alignment-free genomic analysis. It supports natively eighteen of the best performing AF functions coming out of a recent hallmark benchmarking study. FADE development and potential impact comprises novel aspects of interest. Namely, (a) a considerable effort of distributed algorithms, the most tangible result being a much faster execution time of reference methods like MASH and FSWM; (b) a software design that makes FADE user-friendly and easily extendable by Spark non-specialists; (c) its ability to support data- and compute-intensive tasks. About this, we provide a novel and much needed analysis of how informative and robust AF functions are, in terms of the statistical significance of their output. Our findings naturally extend the ones of the highly regarded benchmarking study, since the functions that can really be used are reduced to a handful of the eighteen included in FADE

    TREEOME: A framework for epigenetic and transcriptomic data integration to explore regulatory interactions controlling transcription

    Get PDF
    Motivation: Predictive modelling of gene expression is a powerful framework for the in silico exploration of transcriptional regulatory interactions through the integration of high-throughput -omics data. A major limitation of previous approaches is their inability to handle conditional and synergistic interactions that emerge when collectively analysing genes subject to different regulatory mechanisms. This limitation reduces overall predictive power and thus the reliability of downstream biological inference. Results: We introduce an analytical modelling framework (TREEOME: tree of models of expression) that integrates epigenetic and transcriptomic data by separating genes into putative regulatory classes. Current predictive modelling approaches have found both DNA methylation and histone modification epigenetic data to provide little or no improvement in accuracy of prediction of transcript abundance despite, for example, distinct anti-correlation between mRNA levels and promoter-localised DNA methylation. To improve on this, in TREEOME we evaluate four possible methods of formulating gene-level DNA methylation metrics, which provide a foundation for identifying gene-level methylation events and subsequent differential analysis, whereas most previous techniques operate at the level of individual CpG dinucleotides. We demonstrate TREEOME by integrating gene-level DNA methylation (bisulfite-seq) and histone modification (ChIP-seq) data to accurately predict genome-wide mRNA transcript abundance (RNA-seq) for H1-hESC and GM12878 cell lines. Availability: TREEOME is implemented using open-source software and made available as a pre-configured bootable reference environment. All scripts and data presented in this study are available online at http://sourceforge.net/projects/budden2015treeome/.Comment: 14 pages, 6 figure
    • …
    corecore