2,787 research outputs found

    Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms

    Get PDF
    Response inhibition is frequently measured by the Go/no-go and Stop-signal tasks. These two are often used indiscriminately under the assumption that both measure similar inhibitory control abilities. However, accumulating evidence show differences in both tasks' modulations, raising the question of whether they tap into equivalent cognitive mechanisms. In the current study, a comparison of the performance in both tasks took place under the influence of negative stimuli, following the assumption that ''controlled inhibition'', as measured by Stop-signal, but not ''automatic inhibition'', as measured by Go/no-go, will be affected. 54 young adults performed a task in which negative pictures, neutral pictures or no-pictures preceded go trials, no-go trials, and stop-trials. While the exposure to negative pictures impaired performance on go trials and improved the inhibitory capacity in Stop-signal task, the inhibitory performance in Go/no-go task was generally unaffected. The results support the conceptualization of different mechanisms operated by both tasks, thus emphasizing the necessity to thoroughly fathom both inhibitory processes and identify their corresponding cognitive measures. Implications regarding the usage of cognitive tasks for strengthening inhibitory capacity among individuals struggling with inhibitory impairments are discussed

    What causes aberrant salience in schizophrenia? A role for impaired short-term habituation and the GRIA1 (GluA1) AMPA receptor subunit.

    Get PDF
    The GRIA1 locus, encoding the GluA1 (also known as GluRA or GluR1) AMPA glutamate receptor subunit, shows genome-wide association to schizophrenia. As well as extending the evidence that glutamatergic abnormalities have a key role in the disorder, this finding draws attention to the behavioural phenotype of Gria1 knockout mice. These mice show deficits in short-term habituation. Importantly, under some conditions the attention being paid to a recently presented neutral stimulus can actually increase rather than decrease (sensitization). We propose that this mouse phenotype represents a cause of aberrant salience and, in turn, that aberrant salience (and the resulting positive symptoms) in schizophrenia may arise, at least in part, from a glutamatergic genetic predisposition and a deficit in short-term habituation. This proposal links an established risk gene with a psychological process central to psychosis and is supported by findings of comparable deficits in short-term habituation in mice lacking the NMDAR receptor subunit Grin2a (which also shows association to schizophrenia). As aberrant salience is primarily a dopaminergic phenomenon, the model supports the view that the dopaminergic abnormalities can be downstream of a glutamatergic aetiology. Finally, we suggest that, as illustrated here, the real value of genetically modified mice is not as ‘models of schizophrenia’ but as experimental tools that can link genomic discoveries with psychological processes and help elucidate the underlying neural mechanisms

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception

    Interaction of the phencyclidine model of schizophrenia and nicotine on total and categorized ultrasonic vocalizations in rats

    Get PDF
    Patients with schizophrenia smoke cigarettes at a higher rate than the general population. We hypothesized that a factor in this comorbidity is sensitivity to the reinforcing and reinforcement- enhancement effects of nicotine. Phencyclidine (PCP) was used to model behavioral changes resembling negative symptoms of schizophrenia in rats. USVs in rats have been used to measure emotional states, with 50 kHz USVs indicating positive states and 22 kHz indicating negative. Total and categorized numbers of 22 and 50 kHz ultrasonic vocalizations (USVs) and USVs during a visual stimulus (e.g. a potential measure of reinforcement-enhancement) were examined in rats following .injection ofh PCP (2.0 mg/kg), and/or nicotine (0.2 or 0.4 mg/kg) daily for 7 days. PCP was then discontinued and all rats received nicotine (0.2 mg/kg and 0.4 mg/kg) and PCP (2.0 mg/kg) on 3 challenge days. PCP acutely decreased 50 kHz vocalizations while repeated nicotine potentiated rates of vocalizations, with similar patterns during light presentations. Rats in the PCP and nicotine combination groups made more 50 kHz vocalizations compared to control groups on challenge days. We conclude that PCP may produce a reward deficit that is shown by decreased 50 kHz USVs, and behaviors post-PCP exposure may best model the comorbidity between schizophrenia and nicotine

    Experimental sleep deprivation as a tool to test memory deficits in rodents.

    Get PDF
    Paradigms of sleep deprivation (SD) and memory testing in rodents (laboratory rats and mice) are here reviewed. The vast majority of these studies have been aimed at understanding the contribution of sleep to cognition, and in particular to memory. Relatively little attention, instead, has been devoted to SD as a challenge to induce a transient memory impairment, and therefore as a tool to test cognitive enhancers in drug discovery. Studies that have accurately described methodological aspects of the SD protocol are first reviewed, followed by procedures to investigate SD-induced impairment of learning and memory consolidation in order to propose SD protocols that could be employed as cognitive challenge. Thus, a platform of knowledge is provided for laboratory protocols that could be used to assess the efficacy of drugs designed to improve memory performance in rodents, including rodent models of neurodegenerative diseases that cause cognitive deficits, and Alzheimer's disease in particular. Issues in the interpretation of such preclinical data and their predictive value for clinical translation are also discussed

    Anxiety and attention to threat: cognitive mechanisms and treatment with attention bias modification

    No full text
    Anxiety disorders are common and difficult to treat. Some cognitive models of anxiety propose that attention bias to threat causes and maintains anxiety. This view led to the development of a computer-delivered treatment: attention bias modification (ABM) which predominantly trains attention avoidance of threat. However, meta-analyses indicate disappointing effectiveness of ABM-threat-avoidance training in reducing anxiety. This article considers how ABM may be improved, based on a review of key ideas from models of anxiety, attention and cognitive control. These are combined into an integrative framework of cognitive functions which support automatic threat evaluation/detection and goal-directed thought and action, which reciprocally influence each other. It considers roles of bottom-up and top-down processes involved in threat-evaluation, orienting and inhibitory control in different manifestations of attention bias (initial orienting, attention maintenance, threat avoidance, threat-distractor interference) and different ABM methods (e.g., ABM-threat-avoidance, ABM-positive-search). The framework has implications for computer-delivered treatments for anxiety. ABM methods which encourage active goal-focused attention-search for positive/nonthreat information and flexible cognitive control across multiple processes (particularly inhibitory control, which supports a positive goal-engagement mode over processing of minor threat cues) may prove more effective in reducing anxiety than ABM-threat-avoidance training which targets a specific bias in spatial orienting to threat

    The emotional gatekeeper: a computational model of attentional selection and suppression through the pathway from the amygdala to the inhibitory thalamic reticular nucleus

    Get PDF
    In a complex environment that contains both opportunities and threats, it is important for an organism to flexibly direct attention based on current events and prior plans. The amygdala, the hub of the brain's emotional system, is involved in forming and signaling affective associations between stimuli and their consequences. The inhibitory thalamic reticular nucleus (TRN) is a hub of the attentional system that gates thalamo-cortical signaling. In the primate brain, a recently discovered pathway from the amygdala sends robust projections to TRN. Here we used computational modeling to demonstrate how the amygdala-TRN pathway, embedded in a wider neural circuit, can mediate selective attention guided by emotions. Our Emotional Gatekeeper model demonstrates how this circuit enables focused top-down, and flexible bottom-up, allocation of attention. The model suggests that the amygdala-TRN projection can serve as a unique mechanism for emotion-guided selection of signals sent to cortex for further processing. This inhibitory selection mechanism can mediate a powerful affective 'framing' effect that may lead to biased decision-making in highly charged emotional situations. The model also supports the idea that the amygdala can serve as a relevance detection system. Further, the model demonstrates how abnormal top-down drive and dysregulated local inhibition in the amygdala and in the cortex can contribute to the attentional symptoms that accompany several neuropsychiatric disorders.R01MH057414 - NIMH NIH HHS; R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01NS024760 - NINDS NIH HHS; R01MH101209 - NIMH NIH HHS; R01 NS024760 - NINDS NIH HH

    Contribution of CaMKIV to injury and fear- induced ultrasonic vocalizations in adult mice

    Get PDF
    Calcium-calmodulin dependent protein kinase IV (CaMKIV) is a protein kinase that activates the transcription factor CREB. Our previous work demonstrated that mice lacking CaMKIV had a defect in fear memory while behavioral responses to noxious stimuli were unchanged. Here, we measured ultrasonic vocalizations (USVs) before and after fear conditioning and in response to a noxious injection of capsaicin to measure behavioral responses to emotional stimuli. Consistent with previous findings, behavioral nociceptive responses to capsaicin were undistinguishable between wild-type and CaMKIV(-/- )mice. Wild-type animals showed a selective increase in 50 kHz USVs in response to capsaicin while such an increase was absent in CaMKIV(-/- )mice. The foot shock given during fear conditioning caused an increase in 30 kHz USVs in both wild-type and CaMKIV(-/- )mice. When returned to the context one hour later, USVs from the wild-type were significantly decreased. Additionally, the onset of a tone, which had previously been paired with the foot shock, caused a significant decrease in USVs during auditory conditioning. CaMKIV(-/- )mice showed significantly less reduction in USVs when placed in the same context three days after receiving the shock, consistent with the decrease in freezing reported previously. Our results provide a new approach for investigating the molecular mechanism for emotional vocalization in mice and suggest that CaMKIV dependent signaling pathways play an important role in the emotional response to pain and fear

    The role of neuroinflammatory modulation on POCD development following surgery

    No full text
    The effects of peripheral surgery-induced inflammation and the role of the proinflammatory cytokine interleukin 1-beta (IL-1β) on cognitive function in mouse in several different contexts are explored. Lipopolysaccharide (LPS)-induced inflammation, but not isoflurane-induced anaesthesia, results in memory impairment in mouse, causing a permanent retrograde amnesia in contextual fear-conditioning tests. Blocking the action of IL-1β reduces the hippocampal memory deficit induced by LPS. Peripheral orthopaedic surgery results in inflammation in the brain and cognitive impairment in a mouse model of orthopaedic surgery. Such surgery is associated with increased levels of IL-1β in the serum and in the hippocampus. It also induces hippocampal microgliosis without being associated with an increase in apoptosis. Injection of an interleukin 1 receptor antagonist (IL1-ra) results in reduced microgliosis and reduced IL-1β levels in the serum and in the hippocampus. The inflammatory response to such surgical insult also results in impairment of remote (pre-frontal cortex (PFC)) localised memory in mouse as assessed by two tests of contextual remote memory. Such impairment is not accompanied by an increase in IL-1β in the PFC. There is also a reduction in the level of hippocampal brain derived neurotrophic factor (BDNF) which may contribute to the impairment of memory after such surgery. The murine anxiety response to peripheral orthopaedic surgery, as assessed using the social interaction test, shows that surgery does not increase anxiety in our animal model of peripheral surgery. Nor does such surgery affect olfactory memory under the conditions presented on the olfactory habituation-dishabituation task. A sub-pyrogenic dose of LPS alone fails to impair memory function. However, when the same is administered prior to peripheral surgery, it exacerbates surgery-induced cognitive dysfunction as assessed by fear-conditioning tests. It causes a concomitant additional increase in the levels of IL-1β in both plasma and hippocampus of those animals
    corecore