6,176 research outputs found

    Who is that? Brain networks and mechanisms for identifying individuals

    Get PDF
    Social animals can identify conspecifics by many forms of sensory input. However, whether the neuronal computations that support this ability to identify individuals rely on modality-independent convergence or involve ongoing synergistic interactions along the multiple sensory streams remains controversial. Direct neuronal measurements at relevant brain sites could address such questions, but this requires better bridging the work in humans and animal models. Here, we overview recent studies in nonhuman primates on voice and face identity-sensitive pathways and evaluate the correspondences to relevant findings in humans. This synthesis provides insights into converging sensory streams in the primate anterior temporal lobe (ATL) for identity processing. Furthermore, we advance a model and suggest how alternative neuronal mechanisms could be tested

    The sound of concepts: The link between auditory and conceptual brain systems

    Get PDF
    Concepts in long-term memory are important building blocks of human cognition and are the basis for object recognition, language and thought. While it is well accepted that concepts are comprised of features related to sensory object attributes, it is still unclear how these features are represented in the brain. Of central interest is whether concepts are essentially grounded in perception. This would imply a common neuroanatomical substrate for perceptual and conceptual processing. Here we show using functional magnetic resonance imaging and recordings of event-related potentials that acoustic conceptual features rapidly recruit auditory areas even when implicitly presented through visual words. Recognizing words denoting objects for which acoustic features are highly relevant (e.g. "telephone") suffices to ignite cell assemblies in the posterior superior and middle temporal gyrus (pSTG/MTG) that were also activated by listening to real sounds. Activity in pSTG/MTG had an onset of 150 ms and increased parametrically as a function of acoustic feature relevance. Both findings suggest a conceptual origin of this effect rather than post-conceptual strategies such as imagery. The presently demonstrated link between auditory and conceptual brain systems parallels observations in other memory systems suggesting that modality-specificity represents a general organizational principle in cortical memory representation. The understanding of concepts as a partial reinstatement of brain activity during perception stresses the necessity of rich sensory experiences for concept acquisition. The modality-specific nature of concepts could also explain the difficulties in achieving a consensus about overall definitions of abstract concepts such as freedom or justice unless embedded in a concrete, experienced situation

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Hippocampal sclerosis affects fMR-adaptation of lyrics and melodies in songs

    Get PDF
    Songs constitute a natural combination of lyrics and melodies, but it is unclear whether and how these two song components are integrated during the emergence of a memory trace. Network theories of memory suggest a prominent role of the hippocampus, together with unimodal sensory areas, in the build-up of conjunctive representations. The present study tested the modulatory influence of the hippocampus on neural adaptation to songs in lateral temporal areas. Patients with unilateral hippocampal sclerosis and healthy matched controls were presented with blocks of short songs in which lyrics and/or melodies were varied or repeated in a crossed factorial design. Neural adaptation effects were taken as correlates of incidental emergent memory traces. We hypothesized that hippocampal lesions, particularly in the left hemisphere, would weaken adaptation effects, especially the integration of lyrics and melodies. Results revealed that lateral temporal lobe regions showed weaker adaptation to repeated lyrics as well as a reduced interaction of the adaptation effects for lyrics and melodies in patients with left hippocampal sclerosis. This suggests a deficient build-up of a sensory memory trace for lyrics and a reduced integration of lyrics with melodies, compared to healthy controls. Patients with right hippocampal sclerosis showed a similar profile of results although the effects did not reach significance in this population. We highlight the finding that the integrated representation of lyrics and melodies typically shown in healthy participants is likely tied to the integrity of the left medial temporal lobe. This novel finding provides the first neuroimaging evidence for the role of the hippocampus during repetitive exposure to lyrics and melodies and their integration into a song

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Age of second language acquisition affects nonverbal conflict processing in children : an fMRI study

    Get PDF
    Background: In their daily communication, bilinguals switch between two languages, a process that involves the selection of a target language and minimization of interference from a nontarget language. Previous studies have uncovered the neural structure in bilinguals and the activation patterns associated with performing verbal conflict tasks. One question that remains, however is whether this extra verbal switching affects brain function during nonverbal conflict tasks. Methods: In this study, we have used fMRI to investigate the impact of bilingualism in children performing two nonverbal tasks involving stimulus-stimulus and stimulus-response conflicts. Three groups of 8-11-year-old children - bilinguals from birth (2L1), second language learners (L2L), and a control group of monolinguals (1L1) - were scanned while performing a color Simon and a numerical Stroop task. Reaction times and accuracy were logged. Results: Compared to monolingual controls, bilingual children showed higher behavioral congruency effect of these tasks, which is matched by the recruitment of brain regions that are generally used in general cognitive control, language processing or to solve language conflict situations in bilinguals (caudate nucleus, posterior cingulate gyrus, STG, precuneus). Further, the activation of these areas was found to be higher in 2L1 compared to L2L. Conclusion: The coupling of longer reaction times to the recruitment of extra language-related brain areas supports the hypothesis that when dealing with language conflicts the specialization of bilinguals hampers the way they can process with nonverbal conflicts, at least at early stages in life

    Comprehension through explanation as the interaction of the brain’s coherence and cognitive control networks

    Get PDF
    Discourse comprehension processes attempt to produce an elaborate and well-connected representation in the reader’s mind. A common network of regions including the angular gyrus, posterior cingulate, and dorsal frontal cortex appears to be involved in constructing coherent representations in a variety of tasks including social cognition tasks, narrative comprehension, and expository text comprehension. Reading strategies that require the construction of explicit inferences are used in the present research to examine how this coherence network interacts with other brain regions. A psychophysiological interaction analysis was used to examine regions showing changed functional connectivity with this coherence network when participants were engaged in either a non-inferencing reading strategy, paraphrasing, or a strategy requiring coherence-building inferences, self-explanation. Results of the analysis show that the coherence network increases in functional connectivity with a cognitive control network that may be specialized for the manipulation of semantic representations and the construction of new relations among these representations

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models
    corecore