1,472 research outputs found

    Bridging the Gap Between Requirements and Simulink Model Analysis

    Get PDF
    Formal verification and simulation are powerful tools for the verification of requirements against complex systems. Requirements are developed in early stages of the software lifecycle and are typically expressed in natural language. There is a gap between such requirements and their software implementations.We present a framework that bridges this gap by supporting a tight integration and feedback loop between high-level requirements and their analysis against software artifacts. Our framework implements an analysis portal within the fret requirements elicitation tool, thus forming an end-to-end, open-source environment where requirements are written in an intuitive, structured natural language, and are verified automatically against Simulink models

    Bridging the Gap Between Requirements and Model Analysis : Evaluation on Ten Cyber-Physical Challenge Problems

    Get PDF
    Formal verfication and simulation are powerful tools to validate requirements against complex systems. [Problem] Requirements are developed in early stages of the software lifecycle and are typically written in ambiguous natural language. There is a gap between such requirements and formal notations that can be used by verification tools, and lack of support for proper association of requirements with software artifacts for verification. [Principal idea] We propose to write requirements in an intuitive, structured natural language with formal semantics, and to support formalization and model/code verification as a smooth, well-integrated process. [Contribution] We have developed an end-to-end, open source requirements analysis framework that checks Simulink models against requirements written in structured natural language. Our framework is built in the Formal Requirements Elicitation Tool (fret); we use fret's requirements language named fretish, and formalization of fretish requirements in temporal logics. Our proposed framework contributes the following features: 1) automatic extraction of Simulink model information and association of fretish requirements with target model signals and components; 2) translation of temporal logic formulas into synchronous dataflow cocospec specifications as well as Simulink monitors, to be used by verification tools; we establish correctness of our translation through extensive automated testing; 3) interpretation of counterexamples produced by verification tools back at requirements level. These features support a tight integration and feedback loop between high level requirements and their analysis. We demonstrate our approach on a major case study: the Ten Lockheed Martin Cyber-Physical, aerospace-inspired challenge problems

    Formal Requirements Elicitation with FRET

    Get PDF
    FRET is a tool for writing, understanding, formalizing and analyzing requirements. Users write requirements in an intuitive, restricted natural language, called FRETISH, with precise, unambiguous meaning. For a FRETISH requirement, FRET: 1) produces natural language and diagrammatic explanations of its exact meaning, 2) formalizes the requirement in logics, and 3) supports interactive simulation of produced logic formulas to ensure that they capture user intentions. FRET connects to analysis tools by facilitating the mapping between requirements and models/code, and by generating verification code. FRET is available open source at https://github.com/NASA-SW-VnV/fret; a video can be accessed at : https://tinyurl.com/fretForREFSQ

    Image Processing Application Development: From Rapid Prototyping to SW/HW Co-simulation and Automated Code Generation

    Get PDF
    Nowadays, the market-place offers quite powerful and low cost reconfigurable hardware devices and a wide range of software tools which find application in the image processing field. However, most of the image processing application designs and their latter deployment on specific hardware devices is still carried out quite costly by hand. This paper presents a new approach to image processing application development, which tackles the historic question of how filling the gap existing between rapid throwaway software designs and final software/hardware implementations. A new graphical component-based tool has been implemented which allows to comprehensively develop this kind of applications, from functional and architectural prototyping stages to software/hardware co-simulation and final code generation. Building this tool has been possible thanks to the synergy that arises from the integration of several of the pre-existent software and hardware image processing libraries and tools.COSIVA (TIC 2000-1765-C03-02),EFTCOR (DPI2002-11583-E), PMPDI-UPCT-2004Escuela Técnica Superior de Ingeniería de Telecomunicació

    Helping System Engineers Bridge the Peaks

    Get PDF
    In our experience at NASA, system engineers generally follow the Twin Peaks approach when developing safety-critical systems. However, iterations between the peaks require considerable manual, and in some cases duplicate, effort. A significant part of the manual effort stems from the fact that requirements are written in English natural language rather than a formal notation. In this work, we propose an approach that enables system engineers to leverage formal requirements and automated test generation to streamline iterations, effectively "bridging the peaks". The key to the approach is a formal language notation that a) system engineers are comfortable with, b) is supported by a family of automated V&V tools, and c) is semantically rich enough to describe the requirements of interest. We believe the combination of formalizing requirements and providing tool support to automate the iterations will lead to a more efficient Twin Peaks implementation at NASA

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language

    Flight Simulator Model Integration for Supporting Pilot-in-the-Loop Testing in Model-Based Rotorcraft Design

    Get PDF
    Model-Based Design (MBD) enables iterative design practices and boosts the agility of the air vehicle development programs. Flight simulators are extensively employed in these programs for evaluating the handling qualities of the designed platforms. In order to keep up with the agility provided by the MBD, integration of the air vehicle models in fairly complex flight simulators needs to be addressed. The AVES Software Development Kit (SDK), which is the simulation software suite of DLR Air Vehicle Simulator (AVES), enables tackling the model integration starting from the modeler’s desktop. Additionally, 2Simulate, which is the enabling real-time simulation infrastructure of AVES SDK, provides automated model integration workflow for MATLAB/Simulink models using Simulink Coder code generation facilities. This paper presents the successful employment of AVES SDK and the 2Simulate model integration workflow for addressing integration challenges for Pilot-in-the-Loop Testing in AVES
    • …
    corecore