18,149 research outputs found

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding

    Identification of functionally related enzymes by learning-to-rank methods

    Full text link
    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Classification of Spatio-Temporal fMRI Data in the Spiking Neural Network

    Get PDF
    Deep learning machine that employs Spiking Neural Network (SNN) is currently one of the main techniques in computational intelligence to discover knowledge from various fields.  It has been applied in many application areas include health, engineering, finances, environment, and others.  This paper addresses a classification problem based on a functional Magnetic Resonance Image (fMRI) brain data experiment involving a subject who reads a sentence or looks at a picture.   In the experiment, Signal to Noise Ratio (SNR) is used to select the most relevant features (voxels) before they were propagated in an SNN-based learning architecture.  The spatiotemporal relationships between Spatio Temporal Brain Data (STBD) are learned and classified accordingly. All the brain regions are taken from data with label star plus-04847-v7.mat. The overall results of this experiment show that the SNR method helps to get the most relevant features from the data to produced higher accuracy for Reading a Sentence instead of Looking a Picture.

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure
    • …
    corecore