262 research outputs found

    Design and Implementation of an Archetype Based Interoperable Knowledge Eco-system for Data Buoys

    Get PDF
    This paper describes the ongoing work of the authors in translating two-level system design techniques used in Health Informatics to the Earth Systems Science domain. Health informaticians have developed a sophisticated two-level systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how knowledge interoperability among heterogeneous systems can be achieved. Translating two-level modelling techniques to a new domain is a complex task. A proof-of-concept archetype enabled data buoy eco-system is presented. The concept of operational templates-as-a service is proposed. Design recommendations and implementation experiences of re-working the proposed architecture to run on ultra-resource constrained data buoy platforms using templates-as-service are described

    Towards a Digital Earth: Using Archetypes to Enable Knowledge Interoperability within Geo-Observational Sensor Systems Design

    Get PDF
    Earth System Science (ESS) observational data are often inadequately semantically enriched by geo-observational information systems in order to capture the true meaning of the associated data sets. Data models underpinning these information systems are often too rigid in their data representation to allow for the ever-changing and evolving nature of ESS domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in a computable way. Object oriented techniques typically employed to model data in a complex domain (with evolving domain concepts) can unnecessarily exclude domain specialists from the design process, invariably leading to a mismatch between the needs of the domain specialists, and how the concepts are modelled. In many cases, an over simplification of the domain concept is captured by the computer scientist. This paper proposes that two-level modelling methodologies developed by Health Informaticians to tackle similar problems of specific domain use-case knowledge modelling can be re-used within ESS Informatics. A proposed methodology to re-use two-level modelling within geo-observational sensor systems is described. We show how the Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard can act as a pragmatic solution for a stable reference-model (necessary for two-level modelling), and upon which more volatile domain specific concepts can be defined and managed using archetypes. A use-case is presented, followed by a worked example showing the implementation methodology and considerations leading to an O&M based, two-level modelling design approach, to realise semantically rich and interoperable Earth System Science based geo-observational sensor systems

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Ontology based data warehousing for mining of heterogeneous and multidimensional data sources

    Get PDF
    Heterogeneous and multidimensional big-data sources are virtually prevalent in all business environments. System and data analysts are unable to fast-track and access big-data sources. A robust and versatile data warehousing system is developed, integrating domain ontologies from multidimensional data sources. For example, petroleum digital ecosystems and digital oil field solutions, derived from big-data petroleum (information) systems, are in increasing demand in multibillion dollar resource businesses worldwide. This work is recognized by Industrial Electronic Society of IEEE and appeared in more than 50 international conference proceedings and journals

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Cultural Heritage Storytelling, Engagement and Management in the Era of Big Data and the Semantic Web

    Get PDF
    The current Special Issue launched with the aim of further enlightening important CH areas, inviting researchers to submit original/featured multidisciplinary research works related to heritage crowdsourcing, documentation, management, authoring, storytelling, and dissemination. Audience engagement is considered very important at both sites of the CH production–consumption chain (i.e., push and pull ends). At the same time, sustainability factors are placed at the center of the envisioned analysis. A total of eleven (11) contributions were finally published within this Special Issue, enlightening various aspects of contemporary heritage strategies placed in today’s ubiquitous society. The finally published papers are related but not limited to the following multidisciplinary topics:Digital storytelling for cultural heritage;Audience engagement in cultural heritage;Sustainability impact indicators of cultural heritage;Cultural heritage digitization, organization, and management;Collaborative cultural heritage archiving, dissemination, and management;Cultural heritage communication and education for sustainable development;Semantic services of cultural heritage;Big data of cultural heritage;Smart systems for Historical cities – smart cities;Smart systems for cultural heritage sustainability
    • …
    corecore