153 research outputs found

    Mixed Reality Browsers and Pedestrian Navigation in Augmented Cities

    No full text
    International audienceIn this paper, We use a declarative format for positional audio with synchronization between audio chunks using SMIL. This format has been specifically designed for the type of audio used in AR applications. The audio engine associated to this format is running on mobile platforms (iOS, Android). Our MRB browser called IXE use a format based on volunteered geographic information (OpenStreetMap) and OSM documents for IXE can be fully authored in side OSM editors like JOSM. This is in contrast with the other AR browsers like Layar, Juniao, Wikitude, which use a Point of Interest (POI) based format having no notion of ways. This introduces a fundamental difference and in some senses a duality relation between IXE and the other AR browsers. In IXE, Augmented Virtuality (AV) navigation along a route (composed of ways) is central and AR interaction with objects is delegated to associate 3D activities. In AR browsers, navigation along a route is delegated to associated map activities and AR interaction with objects is central. IXE supports multiple tracking technologies and therefore allows both indoor navigation in buildings and outdoor navigation at the level of sidewalks. A first android version of the IXE browser will be released at the end of 2013. Being based on volunteered geographic it will allow building accessible pedestrian networks in augmented cities

    Mixed Reality Browsers and Pedestrian Navigation in Augmented Cities

    Get PDF
    International audienceIn this paper, We use a declarative format for positional audio with synchronization between audio chunks using SMIL. This format has been specifically designed for the type of audio used in AR applications. The audio engine associated to this format is running on mobile platforms (iOS, Android). Our MRB browser called IXE use a format based on volunteered geographic information (OpenStreetMap) and OSM documents for IXE can be fully authored in side OSM editors like JOSM. This is in contrast with the other AR browsers like Layar, Juniao, Wikitude, which use a Point of Interest (POI) based format having no notion of ways. This introduces a fundamental difference and in some senses a duality relation between IXE and the other AR browsers. In IXE, Augmented Virtuality (AV) navigation along a route (composed of ways) is central and AR interaction with objects is delegated to associate 3D activities. In AR browsers, navigation along a route is delegated to associated map activities and AR interaction with objects is central. IXE supports multiple tracking technologies and therefore allows both indoor navigation in buildings and outdoor navigation at the level of sidewalks. A first android version of the IXE browser will be released at the end of 2013. Being based on volunteered geographic it will allow building accessible pedestrian networks in augmented cities

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.

    Get PDF
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202

    Supplementing Frequency Domain Interpolation Methods for Character Animation

    Get PDF
    The animation of human characters entails difficulties exceeding those met simulating objects, machines or plants. A person's gait is a product of nature affected by mood and physical condition. Small deviations from natural movement are perceived with ease by an unforgiving audience. Motion capture technology is frequently employed to record human movement. Subsequent playback on a skeleton underlying the character being animated conveys many of the subtleties of the original motion. Played-back recordings are of limited value, however, when integration in a virtual environment requires movements beyond those in the motion library, creating a need for the synthesis of new motion from pre-recorded sequences. An existing approach involves interpolation between motions in the frequency domain, with a blending space defined by a triangle network whose vertices represent input motions. It is this branch of character animation which is supplemented by the methods presented in this thesis, with work undertaken in three distinct areas. The first is a streamlined approach to previous work. It provides benefits including an efficiency gain in certain contexts, and a very different perspective on triangle network construction in which they become adjustable and intuitive user-interface devices with an increased flexibility allowing a greater range of motions to be blended than was possible with previous networks. Interpolation-based synthesis can never exhibit the same motion variety as can animation methods based on the playback of rearranged frame sequences. Limitations such as this were addressed by the second phase of work, with the creation of hybrid networks. These novel structures use properties of frequency domain triangle blending networks to seamlessly integrate playback-based animation within them. The third area focussed on was distortion found in both frequency- and time-domain blending. A new technique, single-source harmonic switching, was devised which greatly reduces it, and adds to the benefits of blending in the frequency domain

    A system for image-based modeling and photo editing

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2002.Includes bibliographical references (p. 169-178).Traditionally in computer graphics, a scene is represented by geometric primitives composed of various materials and a collection of lights. Recently, techniques for modeling and rendering scenes from a set of pre-acquired images have emerged as an alternative approach, known as image-based modeling and rendering. Much of the research in this field has focused on reconstructing and rerendering from a set of photographs, while little work has been done to address the problem of editing and modifying these scenes. On the other hand, photo-editing systems, such as Adobe Photoshop, provide a powerful, intuitive, and practical means to edit images. However, these systems are limited by their two-dimensional nature. In this thesis, we present a system that extends photo editing to 3D. Starting from a single input image, the system enables the user to reconstruct a 3D representation of the captured scene, and edit it with the ease and versatility of 2D photo editing. The scene is represented as layers of images with depth, where each layer is an image that encodes both color and depth. A suite of user-assisted tools are employed, based on a painting metaphor, to extract layers and assign depths. The system enables editing from different viewpoints, extracting and grouping of image-based objects, and modifying the shape, color, and illumination of these objects. As part of the system, we introduce three powerful new editing tools. These include two new clone brushing tools: the non-distorted clone brush and the structure-preserving clone brush. They permit copying of parts of an image to another via a brush interface, but alleviate distortions due to perspective foreshortening and object geometry.(cont.) The non-distorted clone brush works on arbitrary 3D geometry, while the structure-preserving clone brush, a 2D version, assumes a planar surface, but has the added advantage of working directly in 2D photo-editing systems that lack depth information. The third tool, a texture-illuminance decoupling filter, discounts the effect of illumination on uniformly textured areas by decoupling large- and small-scale features via bilateral filtering. This tool is crucial for relighting and changing the materials of the scene. There are many applications for such a system, for example architectural, lighting and landscape design, entertainment and special effects, games, and virtual TV sets. The system allows the user to superimpose scaled architectural models into real environments, or to quickly paint a desired lighting scheme of an interior, while being able to navigate within the scene for a fully immersive 3D experience. We present examples and results of complex architectural scenes, 360-degree panoramas, and even paintings, where the user can change viewpoints, edit the geometry and materials, and relight the environment.by Byong Mok Oh.Ph.D

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display

    Kontextsensitivität für den Operationssaal der Zukunft

    Get PDF
    The operating room of the future is a topic of high interest. In this thesis, which is among the first in the recently defined field of Surgical Data Science, three major topics for automated context awareness in the OR of the future will be examined: improved surgical workflow analysis, the newly developed event impact factors, and as application combining these and other concepts the unified surgical display.Der Operationssaal der Zukunft ist ein Forschungsfeld von großer Bedeutung. In dieser Dissertation, die eine der ersten im kürzlich definierten Bereich „Surgical Data Science“ ist, werden drei Themen für die automatisierte Kontextsensitivität im OP der Zukunft untersucht: verbesserte chirurgische Worflowanalyse, die neuentwickelten „Event Impact Factors“ und als Anwendungsfall, der diese Konzepte mit anderen kombiniert, das vereinheitlichte chirurgische Display

    Smart views in smart meeting rooms

    Get PDF
    Ziel der Dissertation ist es, eine Problemlösung zu entwickeln für die Generierung und Anzeige von Informationsrepräsentationen und die Interaktion mit diesen Informationsrepräsentationen in Smart Meeting Rooms, unter Berücksichtigung der Heterogenität und Dynamik der Umgebung. Für die Präsentation von Informationen in Smart Meeting Rooms wird das Konzept des Smart View Managements und für die Interaktion wird das Konzept des Smart Interaction Managements vorgestellt. Auf Basis dieser beiden Konzepte werden Methoden zur interaktiven Manipulation der Informationsrepräsentationen vorgestellt

    Material extrusion-based additive manufacturing: G-code and firmware attacks and Defense frameworks

    Get PDF
    Additive Manufacturing (AM) refers to a group of manufacturing processes that create physical objects by sequentially depositing thin layers. AM enables highly customized production with minimal material wastage, rapid and inexpensive prototyping, and the production of complex assemblies as single parts in smaller production facilities. These features make AM an essential component of Industry 4.0 or Smart Manufacturing. It is now used to print functional components for aircraft, rocket engines, automobiles, medical implants, and more. However, the increased popularity of AM also raises concerns about cybersecurity. Researchers have demonstrated strength degradation attacks on printed objects by injecting cavities in the design file which cause premature failure and catastrophic consequences such as failure of the attacked propeller of a drone during flight. Since a 3D printer is a cyber-physical system that connects the cyber and physical domains in a single process chain, it has a different set of vulnerabilities and security requirements compared to a conventional IT setup. My Ph.D. research focuses on the cybersecurity of one of the most popular AM processes, Material Extrusion or Fused Filament Fabrication (FFF). Although previous research has investigated attacks on printed objects by altering the design, these attacks often leave a larger footprint and are easier to detect. To address this limitation, I have focused on attacks at the intermediate stage of slicing through minimal manipulations at the individual sub-process level. By doing so, I have demonstrated that it is possible to implant subtle defects in printed parts that can evade detection schemes and bypass many quality assessment checks. In addition to exploring attacks through design files or network layer manipulations, I have also proposed firmware attacks that cause damage to the printed parts, the printer, and the printing facility. To detect sabotage attacks on FFF process, I have developed an attack detection framework that analyzes the cyber and physical domain state of the printing process and detects anomalies using a series of estimation and comparison algorithms in time, space, and frequency domains. An implementation case study confirms that cyber-physical security frameworks are an effective solution against sophisticated sabotage attacks. The increasing use of 3D printing technology to produce functional components underscores the growing importance of compliance and regulations in ensuring their quality and safety. Currently, there are no standards or best practices to guide a user in making a critical printing setup forensically ready. Therefore, I am proposing a novel forensic readiness framework for material extrusion-based 3D printing that will guide standards organizations in formulating compliance criteria for important 3D printing setups. I am optimistic that my offensive and defensive research endeavors presented in this thesis will serve as a valuable resource for researchers and industry practitioners in creating a safer and more secure future for additive manufacturing
    • …
    corecore