359 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Online Monitoring System for Domestic Distribution Box

    Get PDF
    A new method for domestic distribution box control and monitoring is proposed and developed using an interconnection of microcontroller system, android device and server with internet connection. Data acquisition from the supply voltages inside the distribution box and control of the circuit breakers, are performed to analyze the cause of power disruption and to cut off the faulty line which is usually time consuming to perform manually. The system works by automatically testing each of the plugs connected to determine the cause of the failure and isolate it. With the faulty line or lines being found, the appropriate data will be sent to a server through a wireless connection which will then notify the user the modification made. The advantage of this system is to quickly notify the user the disruption occurred, the possible fault location while allowing the user the flexibility to take any further action by switching the circuit breakers to affirm the cause of failure. Parallel processing via multi-threading in server are used to increment the upper limit of TCP transmission's throughput. Multiple SQLite-database will be used by multiple threads for parallel storage of data to increase performance

    ICT architectures for TSO-DSO coordination and data exchange: a European perspective

    Get PDF
    The coordination between system operators is a key element for the decarbonization of the power system. Over the past few years, many EU-funded research projects have addressed the challenges of Transmission System Operators (TSO) and Distribution System Operators (DSO) coordination by implementing different data exchange architectures. This paper presents a review of the ICT architectures implemented for the main coordination schemes demonstrated in such projects. The main used technologies are analyzed, considering the type of data exchanged and the communication link. Finally, the paper presents the different gaps and challenges on TSO-DSO coordination related to ICT architectures that must still be faced, paying especial attention to the expected contribution of the EU-funded OneNet project on this topic. IEEECoordiNet H202

    On Cyber-Physical Security of Smart Grid: Data Integrity Attacks and Experiment Platform

    Get PDF
    A Smart Grid is a digitally enabled electric power grid that integrates the computation and communication technologies from cyber world with the sensors and actuators from physical world. Due to the system complexity, typically the high cohesion of communication and power system, the Smart Grid innovation introduces new and fundamentally different security vulnerabilities and risks. In this work, two important research aspects about cyber-physical security of Smart Grid are addressed: (i) The construction, impact and countermeasure of data integrity attacks; and (ii) The design and implementation of general cyber-physical security experiment platform. For data integrity attacks: based on the system model of state estimation process in Smart Grid, firstly, a data integrity attack model is formulated, such that the attackers can generate financial benefits from the real-time electrical market operations. Then, to reduce the required knowledge about the targeted power system when launching attacks, an online attack approach is proposed, such that the attacker is able to construct the desired attacks without the network information of power system. Furthermore, a network information attacking strategy is proposed, in which the most vulnerable meters can be directly identified and the desired measurement perturbations can be achieved by strategically manipulating the network information. Besides the attacking strategies, corresponding countermeasures based on the sparsity of attack vectors and robust state estimator are provided respectively. For the experiment platform: ScorePlus, a software-hardware hybrid and federated experiment environment for Smart Grid is presented. ScorePlus incorporates both software emulator and hardware testbed, such that they all follow the same architecture, and the same Smart Grid application program can be tested on either of them without any modification; ScorePlus provides a federated environment such that multiple software emulators and hardware testbeds at different locations are able to connect and form a unified Smart Grid system; ScorePlus software is encapsulated as a resource plugin in OpenStack cloud computing platform, such that it supports massive deployments with large scale test cases in cloud infrastructure

    Adjusting basic maritime training in an e-learning environment

    Get PDF
    Both EQUADIL and TRIAINA teams express their gratitude to Mr. Anastasios Varvaroussis of the European Commission. In addition both teams shall thank all employees, trainers, instructors and employers involved in the development of these CBT products.This paper aims to disseminate the results and the findings of two projects, partially funded by the European Commission, one on computer based training and another on e-learning. Both projects have been focused on training employees of the wider marine and maritime community. Different approaches have been used for attacking specific needs and several methodologies have been employed. Both projects are described and presented to the academic community as well as to professionals. Their results and findings are thoroughly discussed. The importance of distance working in modern societies and its intertwined role in relation with the development e-learning are also discussed from the point of view of the wider maritime industry.peer-reviewe

    Software Components for Smart Industry Based on Microservices: A Case Study in pH Control Process for the Beverage Industry

    Full text link
    [EN] Modern industries require constant adaptation to new trends. Thus, they seek greater flexibility and agility to cope with disruptions, as well as to solve needs or meet the demand for growth. Therefore, smart industrial applications require a lot of flexibility to be able to react more quickly to continuous market changes, offer more personalized products, increase operational efficiency, and achieve optimum operating points that integrate the entire value chain of a process. This requires the capture of new data that are subsequently processed at different levels of the hierarchy of automation processes, with requirements and technologies according to each level. The result is a new challenge related to the addition of new functionalities in the processes and the interoperability between them. This paper proposes a distributed computational component-based framework that integrates communication, computation, and storage resources and real-time capabilities through container technology, microservices, and the publish/subscribe paradigm, as well as contributing to the development and implementation of industrial automation applications by bridging the gap between generic architectures and physical realizations. The main idea is to enable plug-and-play software components, from predefined components with their interrelationships, to achieve industrial applications without losing or degrading the robustness from previous developments. This paper presents the process of design and implementation with the proposed framework through the implementation of a complex pH control process, ranging from the simulation part to its scaling and implementation to an industrial level, showing the plug-and-play assembly from a definition of components with their relationships to the implementation process with the respective technologies involved. The effectiveness of the proposed framework was experimentally verified in a real production process, showing that the results scaled to an industrial scale comply with the simulated design process. A qualitative comparison with traditional industrial implementations, based on the implementation requirements, was carried out. The implementation was developed in the beverage production plant "Punta Delicia", located in Colima, Mexico. Finally, the results showed that the platform provided a high-fidelity design, analysis, and testing environment for cyber information flow and their effect on the physical operation of the pH control.This work has been supported by for research cooperation between Universidad de Colima (Mexico), Universidad Autonoma de Occidente (Colombia), Universitat Politecnica de Valencia (Spain) and the juice production plant Punta Delicia located in Colima, Mexico.Serrano-Magaña, H.; González-Potes, A.; Ibarra-Junquera, V.; Balbastre, P.; Martínez-Castro, D.; Simó Ten, JE. (2021). Software Components for Smart Industry Based on Microservices: A Case Study in pH Control Process for the Beverage Industry. Electronics. 10(7):1-21. https://doi.org/10.3390/electronics1007076312110

    OPERATION AND PROCESS CONTROL DEVELOPMENT FOR A PILOT-SCALE LEACHING AND SOLVENT EXTRACTION CIRCUIT RECOVERING RARE EARTH ELEMENTS FROM COAL-BASED SOURCES

    Get PDF
    The US Department of Energy in 2010 has identified several rare earth elements as critical materials to enable clean technologies. As part of ongoing research in REEs (rare earth elements) recovery from coal sources, the University of Kentucky has designed, developed and is demonstrating a ¼ ton/hour pilot-scale processing plant to produce high-grade REEs from coal sources. Due to the need to control critical variables (e.g. pH, tank level, etc.), process control is required. To ensure adequate process control, a study was conducted on leaching and solvent extraction control to evaluate the potential of achieving low-cost REE recovery in addition to developing a process control PLC system. The overall operational design and utilization of Six Sigma methodologies is discussed. Further, the application of the controls design, both procedural and electronic for the control of process variables such as pH is discussed. Variations in output parameters were quantified as a function of time. Data trends show that the mean process variable was maintained within prescribed limits. Future work for the utilization of data analysis and integration for data-based decision-making will be discussed
    corecore