26 research outputs found

    Interpretable timbre synthesis using variational autoencoders regularized on timbre descriptors

    Get PDF
    Controllable timbre synthesis has been a subject of research for several decades, and deep neural networks have been the most successful in this area. Deep generative models such as Variational Autoencoders (VAEs) have the ability to generate a high-level representation of audio while providing a structured latent space. Despite their advantages, the interpretability of these latent spaces in terms of human perception is often limited. To address this limitation and enhance the control over timbre generation, we propose a regularized VAE-based latent space that incorporates timbre descriptors. Moreover, we suggest a more concise representation of sound by utilizing its harmonic content, in order to minimize the dimensionality of the latent space

    Interpretable Timbre Synthesis using Variational Autoencoders Regularized on Timbre Descriptors

    Full text link
    Controllable timbre synthesis has been a subject of research for several decades, and deep neural networks have been the most successful in this area. Deep generative models such as Variational Autoencoders (VAEs) have the ability to generate a high-level representation of audio while providing a structured latent space. Despite their advantages, the interpretability of these latent spaces in terms of human perception is often limited. To address this limitation and enhance the control over timbre generation, we propose a regularized VAE-based latent space that incorporates timbre descriptors. Moreover, we suggest a more concise representation of sound by utilizing its harmonic content, in order to minimize the dimensionality of the latent space

    Make That Sound More 'Metallic': Towards a Perceptually Relevant Control of the Timbre of Synthesizer Sounds Using a Variational Autoencoder

    Get PDF
    In this article, we propose a new method of sound transformation based on control parameters that are intuitive and relevant for musicians. This method uses a variational autoencoder (VAE) model that is first trained in an unsupervised manner on a large dataset of synthesizer sounds. Then, a perceptual regularization term is added to the loss function to be optimized, and a supervised fine-tuning of the model is carried out using a small subset of perceptually labeled sounds. The labels were obtained from a perceptual test of Verbal Attribute Magnitude Estimation in which listeners rated this training sound dataset along eight perceptual dimensions (French equivalents of 'metallic, warm, breathy, vibrating, percussive, resonating, evolving, aggressive'). These dimensions were identified as relevant for the description of synthesizer sounds in a first Free Verbalization test. The resulting VAE model was evaluated by objective reconstruction measures and a perceptual test. Both showed that the model was able, to a certain extent, to capture the acoustic properties of most of the perceptual dimensions and to transform sound timbre along at least two of them ('aggressive' and 'vibrating') in a perceptually relevant manner. Moreover, it was able to generalize to unseen samples even though a small set of labeled sounds was used

    MANIFOLD REPRESENTATIONS OF MUSICAL SIGNALS AND GENERATIVE SPACES

    Get PDF
    Tra i diversi campi di ricerca nell\u2019ambito dell\u2019informatica musicale, la sintesi e la generazione di segnali audio incarna la pluridisciplinalita\u300 di questo settore, nutrendo insieme le pratiche scientifiche e musicale dalla sua creazione. Inerente all\u2019informatica dalla sua creazione, la generazione audio ha ispirato numerosi approcci, evolvendo colle pratiche musicale e gli progressi tecnologici e scientifici. Inoltre, alcuni processi di sintesi permettono anche il processo inverso, denominato analisi, in modo che i parametri di sintesi possono anche essere parzialmente o totalmente estratti dai suoni, dando una rappresentazione alternativa ai segnali analizzati. Per di piu\u300, la recente ascesa dei algoritmi di l\u2019apprendimento automatico ha vivamente interrogato il settore della ricerca scientifica, fornendo potenti data-centered metodi che sollevavano diversi epistemologici interrogativi, nonostante i sui efficacia. Particolarmente, un tipo di metodi di apprendimento automatico, denominati modelli generativi, si concentrano sulla generazione di contenuto originale usando le caratteristiche che hanno estratti dei dati analizzati. In tal caso, questi modelli non hanno soltanto interrogato i precedenti metodi di generazione, ma anche sul modo di integrare questi algoritmi nelle pratiche artistiche. Mentre questi metodi sono progressivamente introdotti nel settore del trattamento delle immagini, la loro applicazione per la sintesi di segnali audio e ancora molto marginale. In questo lavoro, il nostro obiettivo e di proporre un nuovo metodo di audio sintesi basato su questi nuovi tipi di generativi modelli, rafforazti dalle nuove avanzati dell\u2019apprendimento automatico. Al primo posto, facciamo una revisione dei approcci esistenti nei settori dei sistemi generativi e di sintesi sonore, focalizzando sul posto di nostro lavoro rispetto a questi disciplini e che cosa possiamo aspettare di questa collazione. In seguito, studiamo in maniera piu\u300 precisa i modelli generativi, e come possiamo utilizzare questi recenti avanzati per l\u2019apprendimento di complesse distribuzione di suoni, in un modo che sia flessibile e nel flusso creativo del utente. Quindi proponiamo un processo di inferenza / generazione, il quale rifletta i processi di analisi/sintesi che sono molto usati nel settore del trattamento del segnale audio, usando modelli latenti, che sono basati sull\u2019utilizzazione di un spazio continuato di alto livello, che usiamo per controllare la generazione. Studiamo dapprima i risultati preliminari ottenuti con informazione spettrale estratte da diversi tipi di dati, che valutiamo qualitativamente e quantitativamente. Successiva- mente, studiamo come fare per rendere questi metodi piu\u300 adattati ai segnali audio, fronteggiando tre diversi aspetti. Primo, proponiamo due diversi metodi di regolarizzazione di questo generativo spazio che sono specificamente sviluppati per l\u2019audio : una strategia basata sulla traduzione segnali / simboli, e una basata su vincoli percettivi. Poi, proponiamo diversi metodi per fronteggiare il aspetto temporale dei segnali audio, basati sull\u2019estrazione di rappresentazioni multiscala e sulla predizione, che permettono ai generativi spazi ottenuti di anche modellare l\u2019aspetto dinamico di questi segnali. Per finire, cambiamo il nostro approccio scientifico per un punto di visto piu\u301 ispirato dall\u2019idea di ricerca e creazione. Primo, descriviamo l\u2019architettura e il design della nostra libreria open-source, vsacids, sviluppata per permettere a esperti o non-esperti musicisti di provare questi nuovi metodi di sintesi. Poi, proponiamo una prima utilizzazione del nostro modello con la creazione di una performance in real- time, chiamata \ue6go, basata insieme sulla nostra libreria vsacids e sull\u2019uso di une agente di esplorazione, imparando con rinforzo nel corso della composizione. Finalmente, tramo dal lavoro presentato alcuni conclusioni sui diversi modi di migliorare e rinforzare il metodo di sintesi proposto, nonche\u301 eventuale applicazione artistiche.Among the diverse research fields within computer music, synthesis and generation of audio signals epitomize the cross-disciplinarity of this domain, jointly nourishing both scientific and artistic practices since its creation. Inherent in computer music since its genesis, audio generation has inspired numerous approaches, evolving both with musical practices and scientific/technical advances. Moreover, some syn- thesis processes also naturally handle the reverse process, named analysis, such that synthesis parameters can also be partially or totally extracted from actual sounds, and providing an alternative representation of the analyzed audio signals. On top of that, the recent rise of machine learning algorithms earnestly questioned the field of scientific research, bringing powerful data-centred methods that raised several epistemological questions amongst researchers, in spite of their efficiency. Especially, a family of machine learning methods, called generative models, are focused on the generation of original content using features extracted from an existing dataset. In that case, such methods not only questioned previous approaches in generation, but also the way of integrating this methods into existing creative processes. While these new generative frameworks are progressively introduced in the domain of image generation, the application of such generative techniques in audio synthesis is still marginal. In this work, we aim to propose a new audio analysis-synthesis framework based on these modern generative models, enhanced by recent advances in machine learning. We first review existing approaches, both in sound synthesis and in generative machine learning, and focus on how our work inserts itself in both practices and what can be expected from their collation. Subsequently, we focus a little more on generative models, and how modern advances in the domain can be exploited to allow us learning complex sound distributions, while being sufficiently flexible to be integrated in the creative flow of the user. We then propose an inference / generation process, mirroring analysis/synthesis paradigms that are natural in the audio processing domain, using latent models that are based on a continuous higher-level space, that we use to control the generation. We first provide preliminary results of our method applied on spectral information, extracted from several datasets, and evaluate both qualitatively and quantitatively the obtained results. Subsequently, we study how to make these methods more suitable for learning audio data, tackling successively three different aspects. First, we propose two different latent regularization strategies specifically designed for audio, based on and signal / symbol translation and perceptual constraints. Then, we propose different methods to address the inner temporality of musical signals, based on the extraction of multi-scale representations and on prediction, that allow the obtained generative spaces that also model the dynamics of the signal. As a last chapter, we swap our scientific approach to a more research & creation-oriented point of view: first, we describe the architecture and the design of our open-source library, vsacids, aiming to be used by expert and non-expert music makers as an integrated creation tool. Then, we propose an first musical use of our system by the creation of a real-time performance, called aego, based jointly on our framework vsacids and an explorative agent using reinforcement learning to be trained during the performance. Finally, we draw some conclusions on the different manners to improve and reinforce the proposed generation method, as well as possible further creative applications.A\u300 travers les diffe\u301rents domaines de recherche de la musique computationnelle, l\u2019analysie et la ge\u301ne\u301ration de signaux audio sont l\u2019exemple parfait de la trans-disciplinarite\u301 de ce domaine, nourrissant simultane\u301ment les pratiques scientifiques et artistiques depuis leur cre\u301ation. Inte\u301gre\u301e a\u300 la musique computationnelle depuis sa cre\u301ation, la synthe\u300se sonore a inspire\u301 de nombreuses approches musicales et scientifiques, e\u301voluant de pair avec les pratiques musicales et les avance\u301es technologiques et scientifiques de son temps. De plus, certaines me\u301thodes de synthe\u300se sonore permettent aussi le processus inverse, appele\u301 analyse, de sorte que les parame\u300tres de synthe\u300se d\u2019un certain ge\u301ne\u301rateur peuvent e\u302tre en partie ou entie\u300rement obtenus a\u300 partir de sons donne\u301s, pouvant ainsi e\u302tre conside\u301re\u301s comme une repre\u301sentation alternative des signaux analyse\u301s. Paralle\u300lement, l\u2019inte\u301re\u302t croissant souleve\u301 par les algorithmes d\u2019apprentissage automatique a vivement questionne\u301 le monde scientifique, apportant de puissantes me\u301thodes d\u2019analyse de donne\u301es suscitant de nombreux questionnements e\u301piste\u301mologiques chez les chercheurs, en de\u301pit de leur effectivite\u301 pratique. En particulier, une famille de me\u301thodes d\u2019apprentissage automatique, nomme\u301e mode\u300les ge\u301ne\u301ratifs, s\u2019inte\u301ressent a\u300 la ge\u301ne\u301ration de contenus originaux a\u300 partir de caracte\u301ristiques extraites directement des donne\u301es analyse\u301es. Ces me\u301thodes n\u2019interrogent pas seulement les approches pre\u301ce\u301dentes, mais aussi sur l\u2019inte\u301gration de ces nouvelles me\u301thodes dans les processus cre\u301atifs existants. Pourtant, alors que ces nouveaux processus ge\u301ne\u301ratifs sont progressivement inte\u301gre\u301s dans le domaine la ge\u301ne\u301ration d\u2019image, l\u2019application de ces techniques en synthe\u300se audio reste marginale. Dans cette the\u300se, nous proposons une nouvelle me\u301thode d\u2019analyse-synthe\u300se base\u301s sur ces derniers mode\u300les ge\u301ne\u301ratifs, depuis renforce\u301s par les avance\u301es modernes dans le domaine de l\u2019apprentissage automatique. Dans un premier temps, nous examinerons les approches existantes dans le domaine des syste\u300mes ge\u301ne\u301ratifs, sur comment notre travail peut s\u2019inse\u301rer dans les pratiques de synthe\u300se sonore existantes, et que peut-on espe\u301rer de l\u2019hybridation de ces deux approches. Ensuite, nous nous focaliserons plus pre\u301cise\u301ment sur comment les re\u301centes avance\u301es accomplies dans ce domaine dans ce domaine peuvent e\u302tre exploite\u301es pour l\u2019apprentissage de distributions sonores complexes, tout en e\u301tant suffisamment flexibles pour e\u302tre inte\u301gre\u301es dans le processus cre\u301atif de l\u2019utilisateur. Nous proposons donc un processus d\u2019infe\u301rence / g\ue9n\ue9ration, refle\u301tant les paradigmes d\u2019analyse-synthe\u300se existant dans le domaine de ge\u301ne\u301ration audio, base\u301 sur l\u2019usage de mode\u300les latents continus que l\u2019on peut utiliser pour contro\u302ler la ge\u301ne\u301ration. Pour ce faire, nous e\u301tudierons de\u301ja\u300 les re\u301sultats pre\u301liminaires obtenus par cette me\u301thode sur l\u2019apprentissage de distributions spectrales, prises d\u2019ensembles de donne\u301es diversifie\u301s, en adoptant une approche a\u300 la fois quantitative et qualitative. Ensuite, nous proposerons d\u2019ame\u301liorer ces me\u301thodes de manie\u300re spe\u301cifique a\u300 l\u2019audio sur trois aspects distincts. D\u2019abord, nous proposons deux strate\u301gies de re\u301gularisation diffe\u301rentes pour l\u2019analyse de signaux audio : une base\u301e sur la traduction signal/ symbole, ainsi qu\u2019une autre base\u301e sur des contraintes perceptives. Nous passerons par la suite a\u300 la dimension temporelle de ces signaux audio, proposant de nouvelles me\u301thodes base\u301es sur l\u2019extraction de repre\u301sentations temporelles multi-e\u301chelle et sur une ta\u302che supple\u301mentaire de pre\u301diction, permettant la mode\u301lisation de caracte\u301ristiques dynamiques par les espaces ge\u301ne\u301ratifs obtenus. En dernier lieu, nous passerons d\u2019une approche scientifique a\u300 une approche plus oriente\u301e vers un point de vue recherche & cre\u301ation. Premie\u300rement, nous pre\u301senterons notre librairie open-source, vsacids, visant a\u300 e\u302tre employe\u301e par des cre\u301ateurs experts et non-experts comme un outil inte\u301gre\u301. Ensuite, nous proposons une premie\u300re utilisation musicale de notre syste\u300me par la cre\u301ation d\u2019une performance temps re\u301el, nomme\u301e \ue6go, base\u301e a\u300 la fois sur notre librarie et sur un agent d\u2019exploration appris dynamiquement par renforcement au cours de la performance. Enfin, nous tirons les conclusions du travail accompli jusqu\u2019a\u300 maintenant, concernant les possibles ame\u301liorations et de\u301veloppements de la me\u301thode de synthe\u300se propose\u301e, ainsi que sur de possibles applications cre\u301atives

    DrumGAN: Synthesis of Drum Sounds With Timbral Feature Conditioning Using Generative Adversarial Networks

    Full text link
    Synthetic creation of drum sounds (e.g., in drum machines) is commonly performed using analog or digital synthesis, allowing a musician to sculpt the desired timbre modifying various parameters. Typically, such parameters control low-level features of the sound and often have no musical meaning or perceptual correspondence. With the rise of Deep Learning, data-driven processing of audio emerges as an alternative to traditional signal processing. This new paradigm allows controlling the synthesis process through learned high-level features or by conditioning a model on musically relevant information. In this paper, we apply a Generative Adversarial Network to the task of audio synthesis of drum sounds. By conditioning the model on perceptual features computed with a publicly available feature-extractor, intuitive control is gained over the generation process. The experiments are carried out on a large collection of kick, snare, and cymbal sounds. We show that, compared to a specific prior work based on a U-Net architecture, our approach considerably improves the quality of the generated drum samples, and that the conditional input indeed shapes the perceptual characteristics of the sounds. Also, we provide audio examples and release the code used in our experiments.Comment: 8 pages, 1 figure, 3 tables, accepted in Proc. of the 21st International Society for Music Information Retrieval (ISMIR2020

    Neural Waveshaping Synthesis

    Get PDF
    We present the Neural Waveshaping Unit (NEWT): a novel, lightweight, fully causal approach to neural audio synthesis which operates directly in the waveform domain, with an accompanying optimisation (FastNEWT) for efficient CPU inference. The NEWT uses time-distributed multilayer perceptrons with periodic activations to implicitly learn nonlinear transfer functions that encode the characteristics of a target timbre. Once trained, a NEWT can produce complex timbral evolutions by simple affine transformations of its input and output signals. We paired the NEWT with a differentiable noise synthesiser and reverb and found it capable of generating realistic musical instrument performances with only 260k total model parameters, conditioned on F0 and loudness features. We compared our method to state-of-the-art benchmarks with a multi-stimulus listening test and the Fréchet Audio Distance and found it performed competitively across the tested timbral domains. Our method significantly outperformed the benchmarks in terms of generation speed, and achieved real-time performance on a consumer CPU, both with and without FastNEWT, suggesting it is a viable basis for future creative sound design tools

    DDSP-Piano: A Neural Sound Synthesizer Informed by Instrument Knowledge

    Get PDF
    Instrument sound synthesis using deep neural networks has received numerous improvements over the last couple of years. Among them, the Differentiable Digital Signal Processing (DDSP) framework has modernized the spectral modeling paradigm by including signal-based synthesizers and effects into fully differentiable architectures. The present work extends the applications of DDSP to the task of polyphonic sound synthesis, with the proposal of a differentiable piano synthesizer conditioned on MIDI inputs. The model architecture is motivated by high-level acoustic modeling knowledge of the instrument, which, along with the sound structure priors inherent to the DDSP components, makes for a lightweight, interpretable, and realistic-sounding piano model. A subjective listening test has revealed that the proposed approach achieves better sound quality than a state-of-the-art neural-based piano synthesizer, but physical-modeling-based models still hold the best quality. Leveraging its interpretability and modularity, a qualitative analysis of the model behavior was also conducted: it highlights where additional modeling knowledge and optimization procedures could be inserted in order to improve the synthesis quality and the manipulation of sound properties. Eventually, the proposed differentiable synthesizer can be further used with other deep learning models for alternative musical tasks handling polyphonic audio and symbolic data

    Notes on the use of variational autoencoders for speech and audio spectrogram modeling

    Get PDF
    International audienceVariational autoencoders (VAEs) are powerful (deep) generative artificial neural networks. They have been recently used in several papers for speech and audio processing, in particular for the modeling of speech/audio spectrograms. In these papers, very poor theoretical support is given to justify the chosen data representation and decoder likelihood function or the corresponding cost function used for training the VAE. Yet, a nice theoretical statistical framework exists and has been extensively presented and discussed in papers dealing with nonnegative matrix factorization (NMF) of audio spectrograms and its application to audio source separation. In the present paper, we show how this statistical framework applies to VAE-based speech/audio spectrogram modeling. This provides the latter insights on the choice and interpretability of data representation and model parameterization
    corecore