3,813 research outputs found

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure

    Controllability and observability of grid graphs via reduction and symmetries

    Full text link
    In this paper we investigate the controllability and observability properties of a family of linear dynamical systems, whose structure is induced by the Laplacian of a grid graph. This analysis is motivated by several applications in network control and estimation, quantum computation and discretization of partial differential equations. Specifically, we characterize the structure of the grid eigenvectors by means of suitable decompositions of the graph. For each eigenvalue, based on its multiplicity and on suitable symmetries of the corresponding eigenvectors, we provide necessary and sufficient conditions to characterize all and only the nodes from which the induced dynamical system is controllable (observable). We discuss the proposed criteria and show, through suitable examples, how such criteria reduce the complexity of the controllability (respectively observability) analysis of the grid

    The brick polytope of a sorting network

    Get PDF
    The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.Comment: 36 pages, 25 figures; Version 2 refers to the recent generalization of our results to spherical subword complexes on finite Coxeter groups (http://arxiv.org/abs/1111.3349

    Computing a pyramid partition generating function with dimer shuffling

    Get PDF
    We verify a recent conjecture of Kenyon/Szendroi, arXiv:0705.3419, by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson--Thomas theory of a non-commutative resolution of the conifold singularity {x1x2 -x3x4 = 0}. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp.Comment: 19 pages, 13 figures. v2: fixed minor typos, updated references and future work; added some definitions to Section
    • …
    corecore